|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import PyPDF2 |
|
import os |
|
|
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
SYSTEM_PROMPT = { |
|
"fr": "Tu es un assistant pédagogique qui aide les professeurs à créer des cours et analyser des documents PDF.", |
|
"en": "You are an educational assistant helping teachers create courses and analyze PDF documents." |
|
} |
|
|
|
|
|
def extract_text_from_pdf(pdf_path): |
|
text = "" |
|
try: |
|
with open(pdf_path, "rb") as f: |
|
reader = PyPDF2.PdfReader(f) |
|
for page in reader.pages: |
|
if page.extract_text(): |
|
text += page.extract_text() + "\n" |
|
return text if text else "Impossible d'extraire du texte de ce PDF." |
|
except Exception as e: |
|
return f"Erreur lors de la lecture du PDF : {str(e)}" |
|
|
|
|
|
def generate_response(subject, history, lang, pdf_path, max_tokens, temperature, top_p): |
|
system_message = SYSTEM_PROMPT.get(lang, SYSTEM_PROMPT["en"]) |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for message in history: |
|
if isinstance(message, dict) and "role" in message and "content" in message: |
|
messages.append(message) |
|
|
|
|
|
if pdf_path: |
|
pdf_text = extract_text_from_pdf(pdf_path) |
|
messages.append({"role": "user", "content": f"Voici un document PDF pertinent : {pdf_text[:1000]}..."}) |
|
|
|
|
|
messages.append({"role": "user", "content": f"Crée un cours sur : {subject}"}) |
|
|
|
|
|
response = "" |
|
for message in client.chat_completion( |
|
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# 🎓 Teacher Assistant Chatbot avec PDF RAG") |
|
|
|
with gr.Row(): |
|
subject_input = gr.Textbox(label="📌 Sujet du cours", placeholder="Ex: Apprentissage automatique") |
|
lang_select = gr.Dropdown(choices=["fr", "en"], value="fr", label="🌍 Langue") |
|
|
|
pdf_upload = gr.File(label="📄 Télécharger un PDF (optionnel)", type="filepath") |
|
|
|
chat = gr.Chatbot(type="messages") |
|
|
|
with gr.Row(): |
|
max_tokens = gr.Slider(minimum=100, maximum=2048, value=512, step=1, label="📝 Max tokens") |
|
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="🔥 Température") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="🎯 Top-p") |
|
|
|
generate_button = gr.Button("🚀 Générer le cours") |
|
|
|
generate_button.click( |
|
generate_response, |
|
inputs=[subject_input, chat, lang_select, pdf_upload, max_tokens, temperature, top_p], |
|
outputs=chat |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|