Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import
|
| 3 |
-
from scrapegraphai.graphs import SmartScraperGraph
|
| 4 |
-
import torch
|
| 5 |
|
| 6 |
# Page config
|
| 7 |
st.set_page_config(
|
| 8 |
-
page_title="Zephyr Chat
|
| 9 |
page_icon="🤖",
|
| 10 |
layout="wide"
|
| 11 |
)
|
|
@@ -14,98 +12,56 @@ st.set_page_config(
|
|
| 14 |
if "messages" not in st.session_state:
|
| 15 |
st.session_state.messages = []
|
| 16 |
|
| 17 |
-
|
| 18 |
-
st.session_state.scrape_results = None
|
| 19 |
-
|
| 20 |
-
# Load Zephyr model
|
| 21 |
@st.cache_resource
|
| 22 |
def load_model():
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
torch_dtype=torch.float16,
|
| 28 |
-
device_map="auto",
|
| 29 |
-
model_kwargs={"load_in_8bit": True} # Use 8-bit quantization to reduce memory usage
|
| 30 |
-
)
|
| 31 |
-
except Exception as e:
|
| 32 |
-
st.error(f"Error loading model: {str(e)}")
|
| 33 |
-
return None
|
| 34 |
-
|
| 35 |
-
# Initialize the model
|
| 36 |
-
model = load_model()
|
| 37 |
-
|
| 38 |
-
# Sidebar for web scraping
|
| 39 |
-
with st.sidebar:
|
| 40 |
-
st.title("Web Scraping")
|
| 41 |
-
url = st.text_input("Enter URL to scrape")
|
| 42 |
-
scrape_prompt = st.text_input("What information do you want to extract?")
|
| 43 |
-
|
| 44 |
-
if st.button("Scrape"):
|
| 45 |
-
try:
|
| 46 |
-
# Configure scraper
|
| 47 |
-
graph_config = {
|
| 48 |
-
"llm": {
|
| 49 |
-
"model": "HuggingFaceH4/zephyr-7b-beta",
|
| 50 |
-
"temperature": 0.7,
|
| 51 |
-
},
|
| 52 |
-
"verbose": True
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
-
# Create scraper instance
|
| 56 |
-
scraper = SmartScraperGraph(
|
| 57 |
-
prompt=scrape_prompt,
|
| 58 |
-
source=url,
|
| 59 |
-
config=graph_config
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
# Run scraping
|
| 63 |
-
st.session_state.scrape_results = scraper.run()
|
| 64 |
-
st.success("Scraping completed!")
|
| 65 |
-
|
| 66 |
-
except Exception as e:
|
| 67 |
-
st.error(f"Error during scraping: {str(e)}")
|
| 68 |
|
| 69 |
# Main chat interface
|
| 70 |
st.title("Zephyr Chatbot 🤖")
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
st.subheader("Scraped Information")
|
| 75 |
-
st.json(st.session_state.scrape_results)
|
| 76 |
|
| 77 |
-
# Display chat messages
|
| 78 |
-
for message in st.session_state.messages:
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
# Chat input
|
| 83 |
-
if prompt := st.chat_input("What's on your mind?"):
|
| 84 |
-
# Add user message to chat history
|
| 85 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 86 |
-
with st.chat_message("user"):
|
| 87 |
-
st.markdown(prompt)
|
| 88 |
-
|
| 89 |
-
# Generate response
|
| 90 |
-
with st.chat_message("assistant"):
|
| 91 |
-
with st.spinner("Thinking..."):
|
| 92 |
-
# Include scraped content in context if available
|
| 93 |
-
context = ""
|
| 94 |
-
if st.session_state.scrape_results:
|
| 95 |
-
context = f"Scraped information: {str(st.session_state.scrape_results)}\n"
|
| 96 |
-
|
| 97 |
-
full_prompt = f"{context}User: {prompt}\nAssistant:"
|
| 98 |
-
|
| 99 |
-
response = model(
|
| 100 |
-
full_prompt,
|
| 101 |
-
max_length=1000,
|
| 102 |
-
temperature=0.7,
|
| 103 |
-
top_p=0.95,
|
| 104 |
-
repetition_penalty=1.15
|
| 105 |
-
)[0]["generated_text"]
|
| 106 |
-
|
| 107 |
-
# Clean up response to get only the assistant's reply
|
| 108 |
-
response = response.split("Assistant:")[-1].strip()
|
| 109 |
-
|
| 110 |
-
st.markdown(response)
|
| 111 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# Page config
|
| 5 |
st.set_page_config(
|
| 6 |
+
page_title="Zephyr Chat",
|
| 7 |
page_icon="🤖",
|
| 8 |
layout="wide"
|
| 9 |
)
|
|
|
|
| 12 |
if "messages" not in st.session_state:
|
| 13 |
st.session_state.messages = []
|
| 14 |
|
| 15 |
+
# Load model and tokenizer
|
|
|
|
|
|
|
|
|
|
| 16 |
@st.cache_resource
|
| 17 |
def load_model():
|
| 18 |
+
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 21 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Main chat interface
|
| 24 |
st.title("Zephyr Chatbot 🤖")
|
| 25 |
|
| 26 |
+
try:
|
| 27 |
+
model, tokenizer = load_model()
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Display chat messages
|
| 30 |
+
for message in st.session_state.messages:
|
| 31 |
+
with st.chat_message(message["role"]):
|
| 32 |
+
st.markdown(message["content"])
|
| 33 |
+
|
| 34 |
+
# Chat input
|
| 35 |
+
if prompt := st.chat_input("What's on your mind?"):
|
| 36 |
+
# Add user message to chat history
|
| 37 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 38 |
+
with st.chat_message("user"):
|
| 39 |
+
st.markdown(prompt)
|
| 40 |
+
|
| 41 |
+
# Generate response
|
| 42 |
+
with st.chat_message("assistant"):
|
| 43 |
+
with st.spinner("Thinking..."):
|
| 44 |
+
# Prepare input
|
| 45 |
+
input_text = f"User: {prompt}\nAssistant:"
|
| 46 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 47 |
+
|
| 48 |
+
# Generate response
|
| 49 |
+
outputs = model.generate(
|
| 50 |
+
inputs.input_ids,
|
| 51 |
+
max_length=200,
|
| 52 |
+
num_return_sequences=1,
|
| 53 |
+
temperature=0.7,
|
| 54 |
+
pad_token_id=tokenizer.eos_token_id
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Decode and display response
|
| 58 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 59 |
+
response = response.split("Assistant:")[-1].strip()
|
| 60 |
+
|
| 61 |
+
st.markdown(response)
|
| 62 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 63 |
+
|
| 64 |
+
except Exception as e:
|
| 65 |
+
st.error(f"Error: {str(e)}")
|
| 66 |
+
st.info("Note: This app requires significant computational resources. Consider using a smaller model or upgrading your Space's resources.")
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|