Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,16 @@ from PIL import Image
|
|
4 |
from io import BytesIO
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
model_id = "Honey-Bee-Society/honeybee_bumblebee_vespidae_resnet50"
|
10 |
classifier = pipeline("image-classification", model=model_id)
|
11 |
|
12 |
-
# 2. Define an inference function
|
13 |
def classify_image_from_url(image_url: str):
|
14 |
"""
|
15 |
Downloads an image from a public URL and runs it through
|
@@ -24,15 +28,16 @@ def classify_image_from_url(image_url: str):
|
|
24 |
# Run inference
|
25 |
results = classifier(image)
|
26 |
|
27 |
-
#
|
|
|
|
|
|
|
|
|
28 |
return results
|
29 |
|
30 |
except Exception as e:
|
31 |
return {"error": str(e)}
|
32 |
|
33 |
-
# 3. Create a Gradio interface
|
34 |
-
# - We accept a single Textbox input (the public image URL)
|
35 |
-
# - We return the classification results in JSON format
|
36 |
demo = gr.Interface(
|
37 |
fn=classify_image_from_url,
|
38 |
inputs=gr.Textbox(lines=1, label="Image URL"),
|
@@ -41,7 +46,5 @@ demo = gr.Interface(
|
|
41 |
description="Enter a public image URL to get top predictions."
|
42 |
)
|
43 |
|
44 |
-
# 4. Launch the app
|
45 |
if __name__ == "__main__":
|
46 |
demo.launch()
|
47 |
-
|
|
|
4 |
from io import BytesIO
|
5 |
from transformers import pipeline
|
6 |
|
7 |
+
# Our label mapping:
|
8 |
+
label_map = {
|
9 |
+
"LABEL_0": "honeybee",
|
10 |
+
"LABEL_1": "bumblebee",
|
11 |
+
"LABEL_2": "vespidae"
|
12 |
+
}
|
13 |
+
|
14 |
model_id = "Honey-Bee-Society/honeybee_bumblebee_vespidae_resnet50"
|
15 |
classifier = pipeline("image-classification", model=model_id)
|
16 |
|
|
|
17 |
def classify_image_from_url(image_url: str):
|
18 |
"""
|
19 |
Downloads an image from a public URL and runs it through
|
|
|
28 |
# Run inference
|
29 |
results = classifier(image)
|
30 |
|
31 |
+
# Post-process to replace "LABEL_0" etc. with "honeybee", "bumblebee", "vespidae"
|
32 |
+
for r in results:
|
33 |
+
if r["label"] in label_map:
|
34 |
+
r["label"] = label_map[r["label"]]
|
35 |
+
|
36 |
return results
|
37 |
|
38 |
except Exception as e:
|
39 |
return {"error": str(e)}
|
40 |
|
|
|
|
|
|
|
41 |
demo = gr.Interface(
|
42 |
fn=classify_image_from_url,
|
43 |
inputs=gr.Textbox(lines=1, label="Image URL"),
|
|
|
46 |
description="Enter a public image URL to get top predictions."
|
47 |
)
|
48 |
|
|
|
49 |
if __name__ == "__main__":
|
50 |
demo.launch()
|
|