Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,46 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList
|
4 |
+
from threading import Thread
|
5 |
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("haidlir/bloom-chatml-id")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("haidlir/bloom-chatml-id")
|
8 |
+
|
9 |
+
def predict(message, history):
|
10 |
+
|
11 |
+
history_chatml_format = []
|
12 |
+
for human, assistant in history:
|
13 |
+
history_chatml_format.append({"role": "user", "content": human })
|
14 |
+
history_chatml_format.append({"role": "assistant", "content":assistant})
|
15 |
+
history_chatml_format.append({"role": "user", "content": message})
|
16 |
+
|
17 |
+
model_inputs = chat_tokenizer.apply_chat_template(
|
18 |
+
history_chatml_format,
|
19 |
+
tokenize=True,
|
20 |
+
add_generation_prompt=True,
|
21 |
+
return_tensors="pt",
|
22 |
+
)
|
23 |
+
|
24 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
25 |
+
generate_kwargs = dict(
|
26 |
+
model_inputs,
|
27 |
+
streamer=streamer,
|
28 |
+
max_new_tokens=1024,
|
29 |
+
do_sample=True,
|
30 |
+
top_p=0.95,
|
31 |
+
top_k=1000,
|
32 |
+
temperature=1.0,
|
33 |
+
num_beams=1,
|
34 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
35 |
+
)
|
36 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
37 |
+
t.start()
|
38 |
+
|
39 |
+
partial_message = ""
|
40 |
+
for new_token in streamer:
|
41 |
+
if new_token != '<':
|
42 |
+
partial_message += new_token
|
43 |
+
yield partial_message
|
44 |
+
|
45 |
+
|
46 |
+
gr.ChatInterface(predict).launch()
|