Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from utils.exif import get_image_info | |
| from utils.generator import generate_prompt | |
| from utils.image2text import git_image2text, w14_image2text, clip_image2text | |
| from utils.translate import en2zh as translate_en2zh | |
| from utils.translate import zh2en as translate_zh2en | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| def text_generate_prompter( | |
| plain_text, | |
| model_name='microsoft', | |
| prompt_min_length=60, | |
| prompt_max_length=75, | |
| prompt_num_return_sequences=8, | |
| ): | |
| result = generate_prompt( | |
| plain_text=plain_text, | |
| model_name=model_name, | |
| min_length=prompt_min_length, | |
| max_length=prompt_max_length, | |
| num_return_sequences=prompt_num_return_sequences | |
| ) | |
| return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0) | |
| def image_generate_prompter( | |
| bclip_text, | |
| w14_text, | |
| model_name='microsoft', | |
| prompt_min_length=60, | |
| prompt_max_length=75, | |
| prompt_num_return_sequences=8, | |
| ): | |
| result = generate_prompt( | |
| plain_text=bclip_text, | |
| model_name=model_name, | |
| min_length=prompt_min_length, | |
| max_length=prompt_max_length, | |
| num_return_sequences=prompt_num_return_sequences | |
| ) | |
| prompter_list = ["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0] | |
| prompter_zh_list = [ | |
| "{},{}".format(translate_en2zh(line.strip()), translate_en2zh(w14_text.strip())) for line in | |
| result.split("\n") if len(line) > 0 | |
| ] | |
| return "\n".join(prompter_list), "\n".join(prompter_zh_list) | |
| with gr.Blocks(title="Prompt生成器") as block: | |
| with gr.Column(): | |
| with gr.Tab('文本生成'): | |
| with gr.Row(): | |
| input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...') | |
| translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)') | |
| output = gr.Textbox(lines=6, label='优化的 Prompt') | |
| output_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)') | |
| with gr.Row(): | |
| translate_btn = gr.Button('翻译') | |
| generate_prompter_btn = gr.Button('优化Prompt') | |
| with gr.Tab('从图片中生成'): | |
| with gr.Row(): | |
| input_image = gr.Image(type='pil') | |
| exif_info = gr.HTML() | |
| output_blip_or_clip = gr.Textbox(label='生成的 Prompt', lines=4) | |
| output_w14 = gr.Textbox(label='W14的 Prompt', lines=4) | |
| with gr.Accordion('W14', open=False): | |
| w14_raw_output = gr.Textbox(label="Output (raw string)") | |
| w14_booru_output = gr.Textbox(label="Output (booru string)") | |
| w14_rating_output = gr.Label(label="Rating") | |
| w14_characters_output = gr.Label(label="Output (characters)") | |
| w14_tags_output = gr.Label(label="Output (tags)") | |
| output_img_prompter = gr.Textbox(lines=6, label='优化的 Prompt') | |
| output_img_prompter_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)') | |
| with gr.Row(): | |
| img_exif_btn = gr.Button('EXIF') | |
| img_blip_btn = gr.Button('BLIP图片转描述') | |
| img_w14_btn = gr.Button('W14图片转描述') | |
| img_clip_btn = gr.Button('CLIP图片转描述') | |
| img_prompter_btn = gr.Button('优化Prompt') | |
| with gr.Tab('参数设置'): | |
| with gr.Accordion('Prompt优化参数', open=True): | |
| prompt_mode_name = gr.Radio( | |
| [ | |
| 'microsoft', | |
| 'mj', | |
| 'gpt2_650k', | |
| ], | |
| value='gpt2_650k', | |
| label='model_name' | |
| ) | |
| prompt_min_length = gr.Slider(1, 512, 100, label='min_length', step=1) | |
| prompt_max_length = gr.Slider(1, 512, 200, label='max_length', step=1) | |
| prompt_num_return_sequences = gr.Slider(1, 30, 6, label='num_return_sequences', step=1) | |
| with gr.Accordion('BLIP参数', open=True): | |
| blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1) | |
| with gr.Accordion('CLIP参数', open=True): | |
| clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type') | |
| clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', label='model_name') | |
| with gr.Accordion('WD14参数', open=True): | |
| image2text_model = gr.Radio( | |
| [ | |
| "SwinV2", | |
| "ConvNext", | |
| "ConvNextV2", | |
| "ViT", | |
| ], | |
| value="ConvNextV2", | |
| label="Model" | |
| ) | |
| general_threshold = gr.Slider( | |
| 0, | |
| 1, | |
| step=0.05, | |
| value=0.35, | |
| label="General Tags Threshold", | |
| ) | |
| character_threshold = gr.Slider( | |
| 0, | |
| 1, | |
| step=0.05, | |
| value=0.85, | |
| label="Character Tags Threshold", | |
| ) | |
| img_prompter_btn.click( | |
| fn=image_generate_prompter, | |
| inputs=[ | |
| output_blip_or_clip, | |
| output_w14, | |
| prompt_mode_name, | |
| prompt_min_length, | |
| prompt_max_length, | |
| prompt_num_return_sequences, | |
| ], | |
| outputs=[output_img_prompter, output_img_prompter_zh] | |
| ) | |
| translate_btn.click( | |
| fn=translate_zh2en, | |
| inputs=input_text, | |
| outputs=translate_output | |
| ) | |
| generate_prompter_btn.click( | |
| fn=text_generate_prompter, | |
| inputs=[ | |
| translate_output, | |
| prompt_mode_name, | |
| prompt_min_length, | |
| prompt_max_length, | |
| prompt_num_return_sequences, | |
| ], | |
| outputs=[output, output_zh] | |
| ) | |
| img_w14_btn.click( | |
| fn=w14_image2text, | |
| inputs=[input_image, image2text_model, general_threshold, character_threshold], | |
| outputs=[ | |
| output_w14, | |
| w14_raw_output, | |
| w14_booru_output, | |
| w14_rating_output, | |
| w14_characters_output, | |
| w14_tags_output | |
| ] | |
| ) | |
| img_blip_btn.click( | |
| fn=git_image2text, | |
| inputs=[input_image, blip_max_length], | |
| outputs=output_blip_or_clip | |
| ) | |
| img_clip_btn.click( | |
| fn=clip_image2text, | |
| inputs=[input_image, clip_mode_type, clip_model_name], | |
| outputs=output_blip_or_clip | |
| ) | |
| img_exif_btn.click( | |
| fn=get_image_info, | |
| inputs=input_image, | |
| outputs=exif_info | |
| ) | |
| block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0') | |