File size: 13,131 Bytes
7169f21 65494f9 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 2a76f84 7169f21 9decda0 7169f21 65494f9 7169f21 2a76f84 7169f21 2a76f84 9decda0 2a76f84 d279b10 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 7169f21 9decda0 7169f21 2a76f84 7169f21 9decda0 7169f21 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 9decda0 2a76f84 7169f21 2a76f84 7169f21 2a76f84 7169f21 2a76f84 7169f21 9decda0 2a76f84 9decda0 2a76f84 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 2a76f84 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 9decda0 7169f21 2a76f84 7169f21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator
import openai
import os
# Set your OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# Translator instance
translator = GoogleTranslator(source="auto", target="es")
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
def get_keywords_by_language(text: str):
"""
Detect language using langdetect and translate keywords if needed.
"""
snippet = text[:200]
try:
detected_lang = detect(snippet)
except Exception:
detected_lang = "en"
if detected_lang == "es":
smishing_in_spanish = [
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
]
other_scam_in_spanish = [
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
]
return smishing_in_spanish, other_scam_in_spanish, "es"
else:
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
def boost_probabilities(probabilities: dict, text: str):
"""
Boost probabilities based on keyword matches and presence of URLs.
"""
lower_text = text.lower()
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
smishing_boost = 0.30 * smishing_count
other_scam_boost = 0.30 * other_scam_count
found_urls = re.findall(r"(https?://[^\s]+|\b(?:[a-zA-Z0-9.-]+\.(?:com|net|org|edu|gov|mil|io|ai|co|info|biz|us|uk|de|fr|es|ru|jp|cn|in|au|ca|br|mx|it|nl|se|no|fi|ch|pl|kr|vn|id|tw|sg|hk))\b)", lower_text)
if found_urls:
smishing_boost += 0.35
p_smishing = probabilities.get("SMiShing", 0.0)
p_other_scam = probabilities.get("Other Scam", 0.0)
p_legit = probabilities.get("Legitimate", 1.0)
p_smishing += smishing_boost
p_other_scam += other_scam_boost
p_legit -= (smishing_boost + other_scam_boost)
# Clamp
p_smishing = max(p_smishing, 0.0)
p_other_scam = max(p_other_scam, 0.0)
p_legit = max(p_legit, 0.0)
# Re-normalize
total = p_smishing + p_other_scam + p_legit
if total > 0:
p_smishing /= total
p_other_scam /= total
p_legit /= total
else:
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
return {
"SMiShing": p_smishing,
"Other Scam": p_other_scam,
"Legitimate": p_legit,
"detected_lang": detected_lang
}
def query_llm_for_classification(raw_message: str) -> dict:
"""
First LLM call: asks for a classification (SMiShing, Other Scam, or Legitimate)
acting as a cybersecurity expert. Returns label and short reason.
"""
if not raw_message.strip():
return {"label": "Unknown", "reason": "No message provided to the LLM."}
system_prompt = (
"You are a cybersecurity expert. You will classify the user's message "
"as one of: SMiShing, Other Scam, or Legitimate. Provide a short reason. "
"Return only JSON with keys: label, reason."
)
user_prompt = f"Message: {raw_message}\nClassify it as SMiShing, Other Scam, or Legitimate."
try:
response = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
],
temperature=0.2
)
raw_reply = response["choices"][0]["message"]["content"].strip()
import json
llm_result = json.loads(raw_reply)
if "label" not in llm_result or "reason" not in llm_result:
return {"label": "Unknown", "reason": f"Unexpected format: {raw_reply}"}
return llm_result
except Exception as e:
return {"label": "Unknown", "reason": f"LLM error: {e}"}
def incorporate_llm_label(boosted: dict, llm_label: str) -> dict:
"""
Adjust the final probabilities based on the LLM's classification.
If LLM says SMiShing, add +0.2 to SMiShing, etc. Then clamp & re-normalize.
"""
if llm_label == "SMiShing":
boosted["SMiShing"] += 0.2
elif llm_label == "Other Scam":
boosted["Other Scam"] += 0.2
elif llm_label == "Legitimate":
boosted["Legitimate"] += 0.2
# else "Unknown" => do nothing
# clamp
for k in boosted:
if boosted[k] < 0:
boosted[k] = 0.0
total = sum(boosted.values())
if total > 0:
for k in boosted:
boosted[k] /= total
else:
# fallback
boosted["Legitimate"] = 1.0
boosted["SMiShing"] = 0.0
boosted["Other Scam"] = 0.0
return boosted
def query_llm_for_explanation(
text: str,
final_label: str,
final_conf: float,
local_label: str,
local_conf: float,
llm_label: str,
llm_reason: str,
found_smishing: list,
found_other_scam: list,
found_urls: list,
detected_lang: str
) -> str:
"""
Second LLM call: provides a holistic explanation of the final classification
in the same language as detected_lang (English or Spanish).
"""
# Decide the language for final explanation
if detected_lang == "es":
# Spanish
system_prompt = (
"Eres un experto en ciberseguridad. Proporciona una explicaci贸n final al usuario en espa帽ol. "
"Combina la clasificaci贸n local, la clasificaci贸n LLM y la etiqueta final en una sola explicaci贸n breve. "
"No reveles el c贸digo interno ni el JSON bruto; simplemente da una breve explicaci贸n f谩cil de entender. "
"Termina con la etiqueta final. "
)
else:
# Default to English
system_prompt = (
"You are a cybersecurity expert providing a final explanation to the user in English. "
"Combine the local classification, the LLM classification, and the final label "
"into one concise explanation. Do not reveal internal code or raw JSON. "
"End with a final statement of the final label."
)
user_context = f"""
User Message:
{text}
Local Classification => Label: {local_label}, Confidence: {local_conf}
LLM Classification => Label: {llm_label}, Reason: {llm_reason}
Final Overall Label => {final_label} (confidence {final_conf})
Suspicious SMiShing Keywords => {found_smishing}
Suspicious Other Scam Keywords => {found_other_scam}
URLs => {found_urls}
"""
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_context}
],
temperature=0.2
)
final_explanation = response["choices"][0]["message"]["content"].strip()
return final_explanation
except Exception as e:
return f"Could not generate final explanation due to error: {e}"
def smishing_detector(input_type, text, image):
"""
Main detection function combining text (if 'Text') & OCR (if 'Screenshot'),
plus two LLM calls:
1) classification to adjust final probabilities,
2) a final explanation summarizing the outcome in the detected language.
"""
if input_type == "Text":
combined_text = text.strip() if text else ""
else:
combined_text = ""
if image is not None:
combined_text = pytesseract.image_to_string(image, lang="spa+eng").strip()
if not combined_text:
return {
"text_used_for_classification": "(none)",
"label": "No text provided",
"confidence": 0.0,
"keywords_found": [],
"urls_found": [],
"llm_label": "Unknown",
"llm_reason": "No text to analyze",
"final_explanation": "No text provided"
}
# 1. Local zero-shot classification
local_result = classifier(
sequences=combined_text,
candidate_labels=CANDIDATE_LABELS,
hypothesis_template="This message is {}."
)
original_probs = {k: float(v) for k, v in zip(local_result["labels"], local_result["scores"])}
# 2. Basic boosting from keywords & URLs
boosted = boost_probabilities(original_probs, combined_text)
detected_lang = boosted.pop("detected_lang", "en")
# Convert to float only
for k in boosted:
boosted[k] = float(boosted[k])
local_label = max(boosted, key=boosted.get)
local_conf = round(boosted[local_label], 3)
# 3. LLM Classification
llm_classification = query_llm_for_classification(combined_text)
llm_label = llm_classification.get("label", "Unknown")
llm_reason = llm_classification.get("reason", "No reason provided")
# 4. Incorporate LLM鈥檚 label into final probabilities
boosted = incorporate_llm_label(boosted, llm_label)
# Now we have updated probabilities
final_label = max(boosted, key=boosted.get)
final_confidence = round(boosted[final_label], 3)
# 5. Gather found keywords & URLs
lower_text = combined_text.lower()
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
found_urls = re.findall(r"(https?://[^\s]+|\b(?:[a-zA-Z0-9.-]+\.(?:com|net|org|edu|gov|mil|io|ai|co|info|biz|us|uk|de|fr|es|ru|jp|cn|in|au|ca|br|mx|it|nl|se|no|fi|ch|pl|kr|vn|id|tw|sg|hk))\b)", lower_text)
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
# 6. Final LLM explanation (in detected_lang)
final_explanation = query_llm_for_explanation(
text=combined_text,
final_label=final_label,
final_conf=final_confidence,
local_label=local_label,
local_conf=local_conf,
llm_label=llm_label,
llm_reason=llm_reason,
found_smishing=found_smishing,
found_other_scam=found_other_scam,
found_urls=found_urls,
detected_lang=detected_lang
)
return {
"detected_language": detected_lang,
"text_used_for_classification": combined_text,
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
"boosted_probabilities_before_llm": {local_label: local_conf},
"llm_label": llm_label,
"llm_reason": llm_reason,
"boosted_probabilities_after_llm": {k: round(v, 3) for k, v in boosted.items()},
"label": final_label,
"confidence": final_confidence,
"smishing_keywords_found": found_smishing,
"other_scam_keywords_found": found_other_scam,
"urls_found": found_urls,
"final_explanation": final_explanation,
}
#
# Gradio interface with dynamic visibility
#
def toggle_inputs(choice):
"""
Return updates for (text_input, image_input) based on the radio selection.
"""
if choice == "Text":
# Show text input, hide image
return gr.update(visible=True), gr.update(visible=False)
else:
# choice == "Screenshot"
# Hide text input, show image
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown("## SMiShing & Scam Detector with LLM-Enhanced Logic (Multilingual Explanation)")
with gr.Row():
input_type = gr.Radio(
choices=["Text", "Screenshot"],
value="Text",
label="Choose Input Type"
)
text_input = gr.Textbox(
lines=3,
label="Paste Suspicious SMS Text",
placeholder="Type or paste the message here...",
visible=True # default
)
image_input = gr.Image(
type="pil",
label="Upload Screenshot",
visible=False # hidden by default
)
# Whenever input_type changes, toggle which input is visible
input_type.change(
fn=toggle_inputs,
inputs=input_type,
outputs=[text_input, image_input],
queue=False
)
# Button to run classification
analyze_btn = gr.Button("Classify")
output_json = gr.JSON(label="Result")
# On button click, call the smishing_detector
analyze_btn.click(
fn=smishing_detector,
inputs=[input_type, text_input, image_input],
outputs=output_json
)
if __name__ == "__main__":
if not openai.api_key:
print("WARNING: OPENAI_API_KEY not set. LLM calls will fail or be skipped.")
demo.launch() |