Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,10 @@
|
|
1 |
-
#from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
2 |
-
import soundfile as sf
|
3 |
-
import torch
|
4 |
import gradio as gr
|
5 |
-
|
6 |
-
|
7 |
-
# load model and processor
|
8 |
-
from transformers import AutoProcessor, AutoModelForCTC
|
9 |
-
|
10 |
-
processor = AutoProcessor.from_pretrained("h4d35/Wav2Vec2-hi")
|
11 |
-
|
12 |
-
model = AutoModelForCTC.from_pretrained("h4d35/Wav2Vec2-hi")
|
13 |
-
|
14 |
-
# define function to read in sound file
|
15 |
-
def map_to_array(file):
|
16 |
-
speech, _ = sf.read(file)
|
17 |
-
return speech
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# tokenize
|
22 |
-
def inference(audio):
|
23 |
-
input_values = processor(map_to_array(audio.name), return_tensors="pt", padding="longest").input_values # Batch size 1
|
24 |
-
|
25 |
-
# retrieve logits
|
26 |
-
logits = model(input_values).logits
|
27 |
-
|
28 |
-
# take argmax and decode
|
29 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
30 |
-
transcription = processor.batch_decode(predicted_ids)
|
31 |
-
return transcription[0]
|
32 |
-
|
33 |
-
inputs = gr.inputs.Audio(label="Input Audio", type="file")
|
34 |
-
outputs = gr.outputs.Textbox(label="Output Text")
|
35 |
-
|
36 |
title = "HindiASR"
|
37 |
-
description = "
|
38 |
-
|
39 |
-
|
40 |
-
#examples=[['
|
41 |
-
gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
title = "HindiASR"
|
3 |
+
description = "Gradio demo for HindiASR"
|
4 |
+
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.06678'>Large-Scale Self- and Semi-Supervised Learning for Speech Translation</a></p>"
|
5 |
+
|
6 |
+
# examples = [['common_voice_en_18301577.mp3']]
|
7 |
+
gr.Interface.load("huggingface/h4d35/Wav2Vec2-hi"",
|
8 |
+
title=title,
|
9 |
+
description=description
|
10 |
+
).launch()
|