File size: 15,659 Bytes
56f1a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2cd34a
56f1a0d
 
 
 
 
 
c2cd34a
 
c4c648b
c2cd34a
 
56f1a0d
 
c4c648b
 
56f1a0d
c4c648b
56f1a0d
c2cd34a
56f1a0d
c2cd34a
 
 
 
56f1a0d
c2cd34a
 
 
c4c648b
c2cd34a
c4c648b
56f1a0d
c2cd34a
 
 
 
 
 
 
 
 
 
56f1a0d
 
c2cd34a
56f1a0d
c2cd34a
 
56f1a0d
 
4eb8666
c2cd34a
56f1a0d
 
4eb8666
56f1a0d
4eb8666
 
56f1a0d
4eb8666
 
56f1a0d
c2cd34a
 
 
 
 
56f1a0d
 
c2cd34a
 
4eb8666
c2cd34a
 
 
56f1a0d
c2cd34a
 
56f1a0d
c2cd34a
 
 
 
 
 
 
 
 
4eb8666
 
56f1a0d
4eb8666
 
 
c2cd34a
4eb8666
c2cd34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb8666
c2cd34a
 
 
 
 
 
 
56f1a0d
c2cd34a
56f1a0d
c2cd34a
56f1a0d
c2cd34a
 
 
 
 
 
 
 
 
 
 
 
4eb8666
c2cd34a
 
 
 
4eb8666
c2cd34a
 
4eb8666
c2cd34a
4eb8666
c2cd34a
 
4eb8666
c2cd34a
 
4eb8666
c2cd34a
 
56f1a0d
 
c2cd34a
56f1a0d
 
 
4eb8666
 
 
 
c2cd34a
 
4eb8666
 
 
c2cd34a
 
4eb8666
c2cd34a
 
 
 
4eb8666
 
56f1a0d
 
c2cd34a
 
 
56f1a0d
 
 
 
 
4eb8666
c2cd34a
56f1a0d
4eb8666
c2cd34a
 
 
 
 
4eb8666
56f1a0d
 
c2cd34a
 
4eb8666
56f1a0d
 
4eb8666
 
 
 
c2cd34a
 
 
 
 
4eb8666
 
c2cd34a
 
 
4eb8666
 
 
c2cd34a
 
4eb8666
 
c2cd34a
 
 
 
 
 
 
 
 
 
 
4eb8666
 
c2cd34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f1a0d
 
 
 
 
c2cd34a
 
 
 
56f1a0d
 
 
 
 
 
c2cd34a
56f1a0d
4eb8666
c2cd34a
56f1a0d
c2cd34a
 
 
 
56f1a0d
 
 
 
4eb8666
c2cd34a
4eb8666
c2cd34a
4eb8666
 
 
 
 
c2cd34a
56f1a0d
c2cd34a
 
56f1a0d
 
 
 
4eb8666
c2cd34a
56f1a0d
c2cd34a
56f1a0d
 
 
 
 
4eb8666
c2cd34a
4eb8666
56f1a0d
c2cd34a
56f1a0d
 
 
 
c2cd34a
56f1a0d
c2cd34a
56f1a0d
 
 
4eb8666
c2cd34a
56f1a0d
 
c2cd34a
 
 
 
56f1a0d
 
 
 
 
 
 
 
4eb8666
c2cd34a
56f1a0d
c2cd34a
56f1a0d
c2cd34a
 
 
 
56f1a0d
c2cd34a
56f1a0d
c2cd34a
 
 
 
56f1a0d
c2cd34a
56f1a0d
4eb8666
c2cd34a
 
 
 
56f1a0d
 
 
 
4eb8666
 
56f1a0d
 
 
 
4eb8666
56f1a0d
4eb8666
 
56f1a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import gradio as gr
import torch
import soundfile as sf
import numpy as np
import tempfile
import os
from pathlib import Path

# Set device - HF Spaces usually provide GPU
if torch.cuda.is_available():
    device = torch.device('cuda')
    device_name = "GPU (CUDA)"
elif torch.backends.mps.is_available():
    device = torch.device('mps') 
    device_name = "GPU (Apple Silicon)"
else:
    device = torch.device('cpu')
    device_name = "CPU"

print(f"πŸ–₯️ Running on: {device_name}")

# Global variables for models
tokenizer = None
model = None
codec_model = None

def load_models_once():
    """Load Llasa-3B and XCodec2 models for real voice cloning"""
    global tokenizer, model, codec_model
    
    if tokenizer is not None:
        return True
        
    try:
        print("🧠 Loading Llasa-3B...")
        
        # Import required libraries
        import sys
        
        from transformers import AutoTokenizer, AutoModelForCausalLM
        
        # Load Llasa-3B from Hugging Face Hub
        tokenizer = AutoTokenizer.from_pretrained("HKUSTAudio/Llasa-3B")
        model = AutoModelForCausalLM.from_pretrained(
            "HKUSTAudio/Llasa-3B",
            torch_dtype=torch.float16 if device.type != 'cpu' else torch.float32,
            low_cpu_mem_usage=True
        )
        
        if device.type != 'cpu':
            model = model.to(device)
        
        model.eval()
        print("βœ… Llasa-3B loaded successfully!")
        
        print("🎡 Loading XCodec2...")
        from xcodec2.modeling_xcodec2 import XCodec2Model
        
        codec_model = XCodec2Model.from_pretrained("HKUSTAudio/xcodec2")
        
        if device.type != 'cpu':
            try:
                codec_model = codec_model.to(device)
                print("βœ… XCodec2 loaded on GPU!")
            except:
                print("βœ… XCodec2 loaded on CPU (some layers not GPU compatible)")
        else:
            print("βœ… XCodec2 loaded on CPU!")
        
        codec_model.eval()
        
        return True
        
    except Exception as e:
        print(f"❌ Error loading models: {e}")
        print("πŸ’‘ Make sure Llasa-3B and xcodec2 directories exist with model files")
        return False

def generate_cloned_voice(voice_sample_path, text, progress=gr.Progress()):
    """Generate speech in a cloned voice using Llasa-3B zero-shot voice cloning"""
    
    if not text or len(text.strip()) == 0:
        return None, "❌ Please enter some text to generate!"
    
    if not voice_sample_path:
        return None, "❌ Please upload a voice sample first!"
    
    if len(text) > 500:
        return None, "❌ Text too long! Keep it under 500 characters for best results."
    
    progress(0.1, desc="Loading models...")
    
    # Load models if not already loaded
    if not load_models_once():
        return None, "❌ Failed to load models!"
    
    try:
        progress(0.2, desc="Processing voice sample...")
        
        import librosa
        import soundfile as sf
        import tempfile
        import numpy as np
        
        # Load and validate the voice sample
        prompt_wav, sr = sf.read(voice_sample_path)
        
        # Ensure 16kHz sample rate (required by Llasa)
        if sr != 16000:
            prompt_wav = librosa.resample(prompt_wav, orig_sr=sr, target_sr=16000)
            sr = 16000
        
        # Convert to tensor format
        prompt_wav = torch.from_numpy(prompt_wav).float().unsqueeze(0)
        
        duration = len(prompt_wav[0]) / sr
        if duration < 3:
            return None, "❌ Voice sample too short! Please upload at least 3 seconds of clear speech."
        
        if duration > 60:
            return None, "❌ Voice sample too long! Please keep it under 60 seconds for best results."
        
        progress(0.4, desc="Extracting voice characteristics...")
        
        # Extract speech tokens from the prompt audio using XCodec2
        with torch.no_grad():
            prompt_wav = prompt_wav.to(device)
            vq_code = codec_model.encode_code(input_waveform=prompt_wav)
            
        progress(0.6, desc="Generating speech tokens...")
        
        # Convert the prompt audio back to speech tokens for conditioning
        def extract_speech_ids(speech_tokens_str):
            speech_ids = []
            for token_str in speech_tokens_str:
                if token_str.startswith('<|s_') and token_str.endswith('|>'):
                    try:
                        num_str = token_str[4:-2]
                        num = int(num_str)
                        speech_ids.append(num)
                    except ValueError:
                        continue
            return speech_ids
        
        # Create a short prompt text (this would ideally be transcribed from the audio)
        # For now, we'll use a generic prompt
        prompt_text = "Hello, this is a voice sample."
        
        # Combine prompt and target text for voice cloning
        input_text = prompt_text + " " + text
        
        # Format for Llasa-3B
        formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
        
        chat = [
            {"role": "user", "content": "Convert the text to speech:" + formatted_text},
            {"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
        ]
        
        input_ids = tokenizer.apply_chat_template(
            chat, 
            tokenize=True, 
            return_tensors='pt', 
            continue_final_message=True
        )
        input_ids = input_ids.to(device)
        
        speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
        
        progress(0.8, desc="Generating cloned speech...")
        
        # Generate speech tokens with voice conditioning
        with torch.no_grad():
            outputs = model.generate(
                input_ids,
                max_new_tokens=min(len(text.split()) * 10, 500),  # Adaptive length
                eos_token_id=speech_end_id,
                do_sample=True,
                top_p=0.9,
                temperature=0.7,
                pad_token_id=tokenizer.eos_token_id,
                use_cache=True
            )
        
        # Extract generated speech tokens
        generated_ids = outputs[0][input_ids.shape[1]:-1]
        speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
        speech_ids = extract_speech_ids(speech_tokens)
        
        if not speech_ids:
            return None, "❌ Failed to generate speech tokens. Try a different voice sample or text."
        
        progress(0.9, desc="Converting to audio...")
        
        # Convert speech tokens to audio using XCodec2
        speech_tokens_tensor = torch.tensor(speech_ids).to(device).unsqueeze(0).unsqueeze(0)
        
        with torch.no_grad():
            gen_wav = codec_model.decode_code(speech_tokens_tensor)
        
        # Save generated audio
        audio_data = gen_wav[0, 0, :].cpu().numpy()
        
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
            sf.write(f.name, audio_data, 16000)
            
        progress(1.0, desc="Complete!")
        
        status_message = f"""βœ… Voice cloning successful!
        
πŸ“Š Voice Sample Analysis:
β€’ Duration: {duration:.1f} seconds
β€’ Sample rate: 16kHz
β€’ Voice characteristics extracted

🎡 Generated Speech:
β€’ Text: "{text[:50]}{'...' if len(text) > 50 else ''}"
β€’ Generated tokens: {len(speech_ids)}
β€’ Output duration: {len(audio_data)/16000:.1f} seconds

🧠 Technology:
β€’ Model: Llasa-3B + XCodec2
β€’ Method: Zero-shot voice cloning
β€’ Quality: Production-ready"""
        
        return f.name, status_message
        
    except Exception as e:
        import traceback
        error_details = traceback.format_exc()
        return None, f"❌ Error during voice cloning: {str(e)}\n\nπŸ”§ Debug info:\n{error_details[:200]}..."

# Create the Gradio interface
def create_interface():
    
    with gr.Blocks(
        title="🎀 Voice Cloning Studio",
        theme=gr.themes.Base(),
        css="""
        .gradio-container {
            background: #0f0f23 !important;
            color: #ffffff !important;
        }
        .dark {
            background: #0f0f23 !important;
        }
        .status-text textarea {
            color: #ffffff !important;
            background-color: #1a1a2e !important;
            border: 1px solid #16213e !important;
            font-weight: 500 !important;
        }
        .status-text label {
            color: #ffffff !important;
            font-weight: 600 !important;
        }
        .comparison-box {
            background: linear-gradient(135deg, #1a1a2e 0%, #16213e 100%) !important;
            border: 1px solid #0e3460 !important;
            border-radius: 12px;
            padding: 20px;
            margin: 15px 0;
        }
        .comparison-box h3 {
            color: #64ffda !important;
            margin-bottom: 15px;
            font-size: 1.2em;
        }
        .comparison-box ul {
            color: #ffffff !important;
            list-style: none;
            padding-left: 0;
        }
        .comparison-box li {
            color: #e0e0e0 !important;
            margin: 8px 0;
            padding-left: 20px;
            position: relative;
        }
        .comparison-box li:before {
            content: "βœ“";
            color: #64ffda;
            font-weight: bold;
            position: absolute;
            left: 0;
        }
        .comparison-box strong {
            color: #64ffda !important;
        }
        .step-header {
            color: #64ffda !important;
            font-size: 1.1em;
            margin: 20px 0 10px 0;
            font-weight: 600;
        }
        .main-title {
            background: linear-gradient(135deg, #64ffda 0%, #00bcd4 100%);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            background-clip: text;
            text-align: center;
            font-size: 2.5em;
            font-weight: 700;
            margin-bottom: 10px;
        }
        .subtitle {
            color: #b0b0b0;
            text-align: center;
            font-size: 1.2em;
            margin-bottom: 30px;
        }
        """
    ) as demo:
        
        gr.HTML("""
        <div style="text-align: center; margin-bottom: 30px;">
            <h1 class="main-title">🎀 Voice Cloning Studio</h1>
            <p class="subtitle">
                Advanced AI voice synthesis technology
            </p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                # Feature comparison
                gr.HTML("""
                <div class="comparison-box">
                    <h3>πŸš€ Key Features</h3>
                    <ul>
                        <li><strong>High-Quality Synthesis</strong> - Professional voice cloning</li>
                        <li><strong>Fast Processing</strong> - Generate speech in seconds</li>
                        <li><strong>Multiple Formats</strong> - Support for MP3, WAV, and more</li>
                        <li><strong>Privacy First</strong> - Your data stays secure</li>
                    </ul>
                </div>
                """)
                
                # Step 1: Upload voice sample
                gr.HTML("<h3 class='step-header'>πŸ“€ Step 1: Upload Voice Sample</h3>")
                voice_sample = gr.Audio(
                    label="Upload audio file (MP3, WAV, M4A)",
                    type="filepath",
                    sources=["upload"]
                )
                
                # Step 2: Enter text
                gr.HTML("<h3 class='step-header'>πŸ“ Step 2: Enter Text to Synthesize</h3>")
                text_input = gr.Textbox(
                    label="Text to convert to speech",
                    placeholder="Enter the text you want to convert to speech using the uploaded voice...",
                    lines=3,
                    max_lines=5
                )
                
                # Step 3: Generate
                gr.HTML("<h3 class='step-header'>🎯 Step 3: Generate Speech</h3>")
                generate_btn = gr.Button(
                    "πŸš€ Generate Voice Clone",
                    variant="primary",
                    size="lg"
                )
                
            with gr.Column(scale=2):
                # Results section
                gr.HTML("<h3 class='step-header'>🎡 Generated Audio</h3>")
                
                audio_output = gr.Audio(
                    label="🎡 Synthesized Speech",
                    type="filepath"
                )
                
                status_text = gr.Textbox(
                    label="πŸ“Š Processing Status",
                    interactive=False,
                    lines=4,
                    elem_classes="status-text"
                )
        
        # Example section
        gr.HTML("<h3 class='step-header'>πŸ’‘ Example Texts</h3>")
        
        examples = [
            "Hello, this is a demonstration of voice cloning technology.",
            "Welcome to the future of artificial intelligence and speech synthesis.",
            "This voice was generated using advanced machine learning models.",
            "Experience the power of AI-driven voice generation."
        ]
        
        gr.Examples(
            examples=examples,
            inputs=text_input,
            label="Click to try:"
        )
        
        # How it works section
        with gr.Accordion("πŸ” How It Works", open=False):
            gr.Markdown("""
            ### The Technology
            
            1. **🎀 Voice Analysis**: Upload a clear audio sample (10-60 seconds recommended)
            2. **🧠 Feature Extraction**: AI analyzes vocal characteristics and patterns
            3. **πŸ“ Text Processing**: Input text is processed and prepared for synthesis
            4. **🎡 Voice Synthesis**: Generate speech that matches the uploaded voice
            
            ### Best Practices
            
            - **Audio Quality**: Use clear, noise-free recordings
            - **Sample Length**: 10-60 seconds provides optimal results
            - **Single Speaker**: Ensure only one person is speaking
            - **Good Microphone**: Higher quality input = better output
            
            ### Applications
            
            - **Content Creation**: Audiobooks, podcasts, video narration
            - **Accessibility**: Text-to-speech for visually impaired users
            - **Entertainment**: Character voices for games and media
            - **Education**: Interactive learning content
            - **Localization**: Multi-language content with consistent voices
            """)
        
        # Event handlers
        generate_btn.click(
            fn=generate_cloned_voice,
            inputs=[voice_sample, text_input],
            outputs=[audio_output, status_text],
            show_progress=True
        )
        
        # Auto-generate on text submit
        text_input.submit(
            fn=generate_cloned_voice,
            inputs=[voice_sample, text_input], 
            outputs=[audio_output, status_text],
            show_progress=True
        )
    
    return demo

# Launch the interface
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )