feat: add training script
Browse files
train.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pytorch_lightning as ptl
|
| 3 |
+
from pytorch_lightning.loggers import TensorBoardLogger
|
| 4 |
+
|
| 5 |
+
from detector.data import FontDataModule
|
| 6 |
+
from detector.model import FontDetector, ResNet18Regressor
|
| 7 |
+
from utils import get_current_tag
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
devices = [6, 7]
|
| 11 |
+
|
| 12 |
+
final_batch_size = 128
|
| 13 |
+
single_device_num_workers = 24
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
lr = 0.0001
|
| 17 |
+
b1 = 0.9
|
| 18 |
+
b2 = 0.999
|
| 19 |
+
|
| 20 |
+
lambda_font = 2.0
|
| 21 |
+
lambda_direction = 0.5
|
| 22 |
+
lambda_regression = 1.0
|
| 23 |
+
|
| 24 |
+
num_warmup_epochs = 10
|
| 25 |
+
num_epochs = 100
|
| 26 |
+
|
| 27 |
+
log_every_n_steps = 100
|
| 28 |
+
|
| 29 |
+
num_device = len(devices)
|
| 30 |
+
|
| 31 |
+
data_module = FontDataModule(
|
| 32 |
+
batch_size=final_batch_size // num_device,
|
| 33 |
+
num_workers=single_device_num_workers,
|
| 34 |
+
pin_memory=True,
|
| 35 |
+
train_shuffle=True,
|
| 36 |
+
val_shuffle=False,
|
| 37 |
+
test_shuffle=False,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
num_iters = data_module.get_train_num_iter(num_device) * num_epochs
|
| 41 |
+
num_warmup_iter = data_module.get_train_num_iter(num_device) * num_warmup_epochs
|
| 42 |
+
|
| 43 |
+
model_name = f"{get_current_tag()}"
|
| 44 |
+
|
| 45 |
+
logger_unconditioned = TensorBoardLogger(
|
| 46 |
+
save_dir=os.getcwd(), name="tensorboard", version=model_name
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
strategy = None if num_device == 1 else "ddp"
|
| 50 |
+
|
| 51 |
+
trainer = ptl.Trainer(
|
| 52 |
+
max_epochs=num_epochs,
|
| 53 |
+
logger=logger_unconditioned,
|
| 54 |
+
devices=devices,
|
| 55 |
+
accelerator="gpu",
|
| 56 |
+
enable_checkpointing=True,
|
| 57 |
+
log_every_n_steps=log_every_n_steps,
|
| 58 |
+
strategy=strategy,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
model = ResNet18Regressor()
|
| 62 |
+
|
| 63 |
+
detector = FontDetector(
|
| 64 |
+
model=model,
|
| 65 |
+
lambda_font=lambda_font,
|
| 66 |
+
lambda_direction=lambda_direction,
|
| 67 |
+
lambda_regression=lambda_regression,
|
| 68 |
+
lr=lr,
|
| 69 |
+
betas=(b1, b2),
|
| 70 |
+
num_warmup_iters=num_warmup_iter,
|
| 71 |
+
num_iters=num_iters,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
trainer.fit(detector, datamodule=data_module)
|