File size: 5,667 Bytes
29efa50
 
 
3cfd2df
29efa50
 
 
 
3cfd2df
c3f3bd0
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f3bd0
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711eab8
 
 
 
 
 
 
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f3bd0
 
 
 
 
 
 
 
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfd2df
 
 
 
29efa50
3cfd2df
 
 
 
 
 
 
 
 
 
 
 
 
 
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711eab8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import os
import gradio as gr
import pickle
from PIL import Image
from torchvision import transforms
from detector.model import *
from detector import config
from font_dataset.font import load_fonts
from huggingface_hub import hf_hub_download

parser = argparse.ArgumentParser()
parser.add_argument(
    "-d",
    "--device",
    type=int,
    default=0,
    help="GPU devices to use (default: 0), -1 for CPU",
)
parser.add_argument(
    "-c",
    "--checkpoint",
    type=str,
    default=None,
    help="Trainer checkpoint path (default: None). Use link as huggingface://<user>/<repo>/<file> for huggingface.co models, currently only supports model file in the root directory.",
)
parser.add_argument(
    "-m",
    "--model",
    type=str,
    default="resnet18",
    choices=["resnet18", "resnet34", "resnet50", "resnet101", "deepfont"],
    help="Model to use (default: resnet18)",
)
parser.add_argument(
    "-f",
    "--font-classification-only",
    action="store_true",
    help="Font classification only (default: False)",
)
parser.add_argument(
    "-z",
    "--size",
    type=int,
    default=512,
    help="Model feature image input size (default: 512)",
)
parser.add_argument(
    "-s",
    "--share",
    action="store_true",
    help="Get public link via Gradio (default: False)",
)
parser.add_argument(
    "-p",
    "--port",
    type=int,
    default=7860,
    help="Port to use for Gradio (default: 7860)",
)

args = parser.parse_args()

config.INPUT_SIZE = args.size
device = torch.device("cpu") if args.device == -1 else torch.device("cuda", args.device)

regression_use_tanh = False

if args.model == "resnet18":
    model = ResNet18Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet34":
    model = ResNet34Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet50":
    model = ResNet50Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet101":
    model = ResNet101Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "deepfont":
    assert args.pretrained is False
    assert args.size == 105
    assert args.font_classification_only is True
    model = DeepFontBaseline()
else:
    raise NotImplementedError()

if torch.__version__ >= "2.0" and os.name == "posix":
    model = torch.compile(model)


if str(args.checkpoint).startswith("huggingface://"):
    args.checkpoint = args.checkpoint[14:]
    user, repo, file = args.checkpoint.split("/")
    repo = f"{user}/{repo}"
    args.checkpoint = hf_hub_download(repo, file)


detector = FontDetector(
    model=model,
    lambda_font=1,
    lambda_direction=1,
    lambda_regression=1,
    font_classification_only=args.font_classification_only,
    lr=1,
    betas=(1, 1),
    num_warmup_iters=1,
    num_iters=1e9,
    num_epochs=1e9,
)
detector.load_from_checkpoint(
    args.checkpoint,
    map_location=device,
    model=model,
    lambda_font=1,
    lambda_direction=1,
    lambda_regression=1,
    font_classification_only=args.font_classification_only,
    lr=1,
    betas=(1, 1),
    num_warmup_iters=1,
    num_iters=1e9,
    num_epochs=1e9,
)
detector = detector.to(device)
detector.eval()


transform = transforms.Compose(
    [
        transforms.Resize((512, 512)),
        transforms.ToTensor(),
    ]
)


def prepare_fonts(cache_path="font_demo_cache.bin"):
    print("Preparing fonts ...")
    if os.path.exists(cache_path):
        return pickle.load(open(cache_path, "rb"))

    font_list, exclusion_rule = load_fonts()

    font_list = list(filter(lambda x: not exclusion_rule(x), font_list))
    font_list.sort(key=lambda x: x.path)

    for i in range(len(font_list)):
        font_list[i].path = font_list[i].path[18:]  # remove ./dataset/fonts/./ prefix

    with open(cache_path, "wb") as f:
        pickle.dump(font_list, f)
    return font_list


font_list = prepare_fonts()

font_demo_images = []

for i in range(len(font_list)):
    font_demo_images.append(Image.open(f"demo_fonts/{i}.jpg").convert("RGB"))


def recognize_font(image):
    transformed_image = transform(image)
    with torch.no_grad():
        transformed_image = transformed_image.to(device)
        output = detector(transformed_image.unsqueeze(0))
        prob = output[0][: config.FONT_COUNT].softmax(dim=0)

        indicies = torch.topk(prob, 9)[1]

        return [
            {font_list[i].path: float(prob[i]) for i in range(config.FONT_COUNT)},
            *[gr.Image.update(value=font_demo_images[indicies[i]]) for i in range(9)],
            *[
                gr.Markdown.update(
                    value=f"**Font Name**: {font_list[indicies[i]].path}"
                )
                for i in range(9)
            ],
        ]


def generate_grid(num_columns, num_rows):
    ret_images, ret_labels = [], []
    with gr.Column():
        for _ in range(num_rows):
            with gr.Row():
                for _ in range(num_columns):
                    with gr.Column():
                        ret_labels.append(gr.Markdown("**Font Name**"))
                        ret_images.append(gr.Image())
    return ret_images, ret_labels


with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            inp = gr.Image(type="pil", label="Input Image")
            out = gr.Label(num_top_classes=9, label="Output Font")
        font_demo_images_blocks, font_demo_labels_blocks = generate_grid(3, 3)

    submit_button = gr.Button(label="Submit")
    submit_button.click(
        fn=recognize_font,
        inputs=inp,
        outputs=[out, *font_demo_images_blocks, *font_demo_labels_blocks],
    )


demo.launch(share=args.share, server_port=args.port)