from sentence_transformers import SentenceTransformer, SimilarityFunction import streamlit as st model_name = "nomic-ai/nomic-embed-text-v2-moe" with st.form("embedding"): sentence1 = st.text_inupt("Sentence 1:","Hello!") sentence2 = st.text_inupt("Sentence 2:","¡Hola!") sim_fun = st.selectbox('Similarity Function', ['COSINE', 'DOT_PRODUCT', 'EUCLIDEAN', 'MANHATTAN']) calculate = st.form_submit_button('Calculate') if calculate: model = SentenceTransformer(model_name, trust_remote_code=True) sentences = [sentence1, sentence2] embeddings = model.encode(sentences, prompt_name="passage") similarity_fn_enum = getattr(SimilarityFunction, sim_fun) model.similarity_fn_name = similarity_fn_enum similarities = model.similarity(embeddings[0], embeddings[1]) st.write(f"similarity: {similarities}")