# app/embeddings.py from sentence_transformers import SentenceTransformer import numpy as np class EmbeddingManager: def __init__(self, model_name="all-MiniLM-L6-v2"): self.model = SentenceTransformer(model_name) print(f"✅ Loaded embedding model: {model_name}") def generate_embeddings(self, texts): """Generate embeddings for a list of text chunks""" # Returns a numpy array of embeddings return self.model.encode(texts, convert_to_numpy=True, show_progress_bar=True)