PadmasaliGovardhan
commited on
Commit
·
bba9407
1
Parent(s):
f1e8605
api update commit final
Browse files- app/rag_app.py +48 -47
app/rag_app.py
CHANGED
|
@@ -1,96 +1,97 @@
|
|
| 1 |
-
|
| 2 |
# app/rag_app.py
|
| 3 |
import os
|
| 4 |
-
from groq import Groq
|
| 5 |
import httpx
|
|
|
|
| 6 |
from .embeddings import EmbeddingManager
|
| 7 |
from .store import VectorStore
|
| 8 |
|
|
|
|
| 9 |
class RAGApp:
|
| 10 |
def __init__(self):
|
| 11 |
self.embedder = None
|
| 12 |
self.vectorstore = None
|
| 13 |
self.client = None
|
| 14 |
-
|
| 15 |
try:
|
|
|
|
| 16 |
self.embedder = EmbeddingManager()
|
| 17 |
self.vectorstore = VectorStore()
|
| 18 |
-
api_key = os.getenv("GROQ_API_KEY")
|
| 19 |
-
custom_http_client = httpx.Client()
|
| 20 |
-
self.client = Groq(api_key=api_key, http_client=custom_http_client)
|
| 21 |
-
except Exception as e:
|
| 22 |
-
print("RAGApp init error:", e)
|
| 23 |
-
# Optionally, re-raise to crash on startup.
|
| 24 |
-
# raise RuntimeError(f"RAGApp init failed: {e}")
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
| 30 |
def add_notes(self, text):
|
| 31 |
-
chunks = [text[i:i+1000] for i in range(0, len(text), 800)]
|
| 32 |
embeddings = self.embedder.generate_embeddings(chunks)
|
| 33 |
self.vectorstore.add_documents(chunks, embeddings)
|
| 34 |
return len(chunks)
|
| 35 |
|
|
|
|
| 36 |
def ask(self, query):
|
| 37 |
try:
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
q_embed = self.embedder.generate_embeddings([query])[0]
|
| 40 |
|
| 41 |
-
# 2️⃣ Retrieve
|
| 42 |
docs = self.vectorstore.retrieve_similar_docs(q_embed, top_k=3)
|
| 43 |
-
context = "\n\n".join(docs)
|
| 44 |
|
| 45 |
-
# 3️⃣ Prepare the
|
| 46 |
messages = [
|
| 47 |
{
|
| 48 |
"role": "system",
|
| 49 |
"content": (
|
| 50 |
-
"You are a world-class engineering tutor specializing in Electronics, Embedded Systems, and Programming
|
| 51 |
-
"Your
|
| 52 |
-
"###
|
| 53 |
-
"1
|
| 54 |
-
"2
|
| 55 |
-
"3
|
| 56 |
-
"4
|
| 57 |
-
"###
|
| 58 |
-
"
|
| 59 |
-
"
|
| 60 |
-
"
|
| 61 |
-
"
|
| 62 |
-
"5. Practical Insight\n"
|
| 63 |
-
"6. Common Mistakes + Tips\n\n"
|
| 64 |
-
"### ✨ Style Guidelines:\n"
|
| 65 |
-
"- Use bold keywords and emojis, and Markdown for structure.\n"
|
| 66 |
-
"- Be friendly yet technically precise.\n"
|
| 67 |
-
"- Never say 'as an AI model'.\n"
|
| 68 |
-
"- If context from notes is relevant, integrate it smoothly.\n\n"
|
| 69 |
-
"Your goal: help the student truly understand the concept."
|
| 70 |
),
|
| 71 |
},
|
| 72 |
{
|
| 73 |
"role": "user",
|
| 74 |
-
"content": f"Context:\n{context}\n\nQuestion: {query}\nAnswer:",
|
| 75 |
},
|
| 76 |
]
|
| 77 |
|
| 78 |
-
# 4️⃣ Call
|
| 79 |
completion = self.client.chat.completions.create(
|
| 80 |
-
model="openai/gpt-oss-20b",
|
| 81 |
messages=messages,
|
| 82 |
-
temperature=0.
|
| 83 |
max_tokens=800,
|
| 84 |
-
top_p=1
|
| 85 |
)
|
| 86 |
|
| 87 |
-
# 5️⃣
|
| 88 |
-
|
| 89 |
-
key, value = chunk
|
| 90 |
-
if key == 'choices':
|
| 91 |
-
return value[0].message.content.strip()
|
| 92 |
|
| 93 |
-
return "No valid response from model."
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
print("❌ Error in ask():", e)
|
|
|
|
|
|
|
| 1 |
# app/rag_app.py
|
| 2 |
import os
|
|
|
|
| 3 |
import httpx
|
| 4 |
+
from openai import OpenAI
|
| 5 |
from .embeddings import EmbeddingManager
|
| 6 |
from .store import VectorStore
|
| 7 |
|
| 8 |
+
|
| 9 |
class RAGApp:
|
| 10 |
def __init__(self):
|
| 11 |
self.embedder = None
|
| 12 |
self.vectorstore = None
|
| 13 |
self.client = None
|
| 14 |
+
|
| 15 |
try:
|
| 16 |
+
# Initialize embedder and FAISS vectorstore
|
| 17 |
self.embedder = EmbeddingManager()
|
| 18 |
self.vectorstore = VectorStore()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Load Hugging Face token
|
| 21 |
+
|
| 22 |
+
api_key = os.getenv("HF_TOKEN")
|
| 23 |
+
if not api_key:
|
| 24 |
+
raise ValueError("HF_TOKEN not found in environment variables")
|
| 25 |
|
| 26 |
+
# Use Hugging Face OpenAI-compatible router
|
| 27 |
+
self.client = OpenAI(
|
| 28 |
+
base_url="https://router.huggingface.co/v1",
|
| 29 |
+
api_key=api_key,
|
| 30 |
+
http_client=httpx.Client(timeout=60.0),
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
print("✅ RAGApp initialized successfully with Hugging Face router.")
|
| 34 |
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print("❌ RAGApp init error:", e)
|
| 37 |
+
self.client = None
|
| 38 |
|
| 39 |
+
# 🧠 Add notes and store embeddings
|
| 40 |
def add_notes(self, text):
|
| 41 |
+
chunks = [text[i:i + 1000] for i in range(0, len(text), 800)]
|
| 42 |
embeddings = self.embedder.generate_embeddings(chunks)
|
| 43 |
self.vectorstore.add_documents(chunks, embeddings)
|
| 44 |
return len(chunks)
|
| 45 |
|
| 46 |
+
# 💬 Query the system
|
| 47 |
def ask(self, query):
|
| 48 |
try:
|
| 49 |
+
if not self.client:
|
| 50 |
+
return "Error: API client not initialized."
|
| 51 |
+
|
| 52 |
+
# 1️⃣ Create embedding for query
|
| 53 |
q_embed = self.embedder.generate_embeddings([query])[0]
|
| 54 |
|
| 55 |
+
# 2️⃣ Retrieve similar chunks
|
| 56 |
docs = self.vectorstore.retrieve_similar_docs(q_embed, top_k=3)
|
| 57 |
+
context = "\n\n".join(docs) if docs else "No context found in notes."
|
| 58 |
|
| 59 |
+
# 3️⃣ Prepare the conversation
|
| 60 |
messages = [
|
| 61 |
{
|
| 62 |
"role": "system",
|
| 63 |
"content": (
|
| 64 |
+
"You are a world-class engineering tutor specializing in Electronics, Embedded Systems, and Programming.\n"
|
| 65 |
+
"Your responses must be clear, technically accurate, and engaging.\n\n"
|
| 66 |
+
"### Behavior:\n"
|
| 67 |
+
"1. If the question is conceptual → explain with clarity and real-world relevance.\n"
|
| 68 |
+
"2. If it involves code → analyze, correct, and explain fixes.\n"
|
| 69 |
+
"3. If hardware-related → explain theory + circuit/signal behavior.\n"
|
| 70 |
+
"4. If theory-based from uploaded notes → connect with practical examples.\n\n"
|
| 71 |
+
"### Output Style:\n"
|
| 72 |
+
"- Use Markdown.\n"
|
| 73 |
+
"- Highlight key terms with bold text.\n"
|
| 74 |
+
"- Use emojis and structured headings for readability.\n"
|
| 75 |
+
"- Avoid phrases like 'as an AI model'."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
),
|
| 77 |
},
|
| 78 |
{
|
| 79 |
"role": "user",
|
| 80 |
+
"content": f"Context:\n{context}\n\nQuestion: {query}\nAnswer clearly and in detail below:",
|
| 81 |
},
|
| 82 |
]
|
| 83 |
|
| 84 |
+
# 4️⃣ Call Hugging Face model via router
|
| 85 |
completion = self.client.chat.completions.create(
|
| 86 |
+
model="openai/gpt-oss-20b", # ✅ correct model route
|
| 87 |
messages=messages,
|
| 88 |
+
temperature=0.4,
|
| 89 |
max_tokens=800,
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
+
# 5️⃣ Return the model's response
|
| 93 |
+
return completion.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
print("❌ Error in ask():", e)
|