PadmasaliGovardhan commited on
Commit
6752d04
·
1 Parent(s): 7c96717

Hugginface backend and netlify frontend commit

Browse files
notebook/document.ipynb CHANGED
@@ -339,6 +339,22 @@
339
  "type(dir_documents[0])"
340
  ]
341
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
  {
343
  "cell_type": "markdown",
344
  "id": "1c5f116b",
@@ -366,7 +382,7 @@
366
  },
367
  {
368
  "cell_type": "code",
369
- "execution_count": 24,
370
  "id": "875fbee5",
371
  "metadata": {},
372
  "outputs": [
@@ -381,10 +397,10 @@
381
  {
382
  "data": {
383
  "text/plain": [
384
- "<__main__.EmbeddingManager at 0x75281dda42b0>"
385
  ]
386
  },
387
- "execution_count": 24,
388
  "metadata": {},
389
  "output_type": "execute_result"
390
  }
@@ -423,7 +439,7 @@
423
  },
424
  {
425
  "cell_type": "code",
426
- "execution_count": 28,
427
  "id": "5fe490be",
428
  "metadata": {},
429
  "outputs": [
@@ -438,10 +454,10 @@
438
  {
439
  "data": {
440
  "text/plain": [
441
- "<__main__.VectorStore at 0x75281e50e410>"
442
  ]
443
  },
444
- "execution_count": 28,
445
  "metadata": {},
446
  "output_type": "execute_result"
447
  }
@@ -496,6 +512,8 @@
496
  " raise ValueError(\"Number of documents must match number of embeddings\")\n",
497
  " \n",
498
  " print(f\"Adding {len(documents)} documents to vector store...\")\n",
 
 
499
  " \n",
500
  " # Prepare data for ChromaDB\n",
501
  " ids = []\n",
 
339
  "type(dir_documents[0])"
340
  ]
341
  },
342
+ {
343
+ "cell_type": "markdown",
344
+ "id": "036e1450",
345
+ "metadata": {},
346
+ "source": [
347
+ "### Chunking\n"
348
+ ]
349
+ },
350
+ {
351
+ "cell_type": "code",
352
+ "execution_count": null,
353
+ "id": "5ed67558",
354
+ "metadata": {},
355
+ "outputs": [],
356
+ "source": []
357
+ },
358
  {
359
  "cell_type": "markdown",
360
  "id": "1c5f116b",
 
382
  },
383
  {
384
  "cell_type": "code",
385
+ "execution_count": 37,
386
  "id": "875fbee5",
387
  "metadata": {},
388
  "outputs": [
 
397
  {
398
  "data": {
399
  "text/plain": [
400
+ "<__main__.EmbeddingManager at 0x75281d7ef610>"
401
  ]
402
  },
403
+ "execution_count": 37,
404
  "metadata": {},
405
  "output_type": "execute_result"
406
  }
 
439
  },
440
  {
441
  "cell_type": "code",
442
+ "execution_count": 36,
443
  "id": "5fe490be",
444
  "metadata": {},
445
  "outputs": [
 
454
  {
455
  "data": {
456
  "text/plain": [
457
+ "<__main__.VectorStore at 0x75281e50f460>"
458
  ]
459
  },
460
+ "execution_count": 36,
461
  "metadata": {},
462
  "output_type": "execute_result"
463
  }
 
512
  " raise ValueError(\"Number of documents must match number of embeddings\")\n",
513
  " \n",
514
  " print(f\"Adding {len(documents)} documents to vector store...\")\n",
515
+ " \n",
516
+ " \n",
517
  " \n",
518
  " # Prepare data for ChromaDB\n",
519
  " ids = []\n",
notebook/document_2.ipynb CHANGED
@@ -54,19 +54,19 @@
54
  },
55
  {
56
  "cell_type": "code",
57
- "execution_count": null,
58
  "id": "19755831",
59
  "metadata": {},
60
  "outputs": [
61
  {
62
  "ename": "ModuleNotFoundError",
63
- "evalue": "No module named 'langchain_ollama'",
64
  "output_type": "error",
65
  "traceback": [
66
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
67
  "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
68
- "Cell \u001b[0;32mIn[11], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# backend/rag_app.py\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mlangchain_ollama\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m OllamaLLM\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01membeddings\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m EmbeddingManager\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mstore\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m VectorStore\n",
69
- "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'langchain_ollama'"
70
  ]
71
  }
72
  ],
 
54
  },
55
  {
56
  "cell_type": "code",
57
+ "execution_count": 12,
58
  "id": "19755831",
59
  "metadata": {},
60
  "outputs": [
61
  {
62
  "ename": "ModuleNotFoundError",
63
+ "evalue": "No module named 'openai'",
64
  "output_type": "error",
65
  "traceback": [
66
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
67
  "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
68
+ "Cell \u001b[0;32mIn[12], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# backend/rag_app.py\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mos\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mopenai\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m OpenAI\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01membeddings\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m EmbeddingManager\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mstore\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m VectorStore\n",
69
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'openai'"
70
  ]
71
  }
72
  ],