Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,18 +11,23 @@ from torchvision.transforms import (
|
|
| 11 |
from PIL import Image
|
| 12 |
import gradio as gr
|
| 13 |
|
|
|
|
| 14 |
(ys,) = np.load("embs.npz").values()
|
|
|
|
| 15 |
model = torch.load(
|
| 16 |
"style-extractor-v0.2.0.ckpt",
|
| 17 |
map_location="cpu",
|
| 18 |
)
|
|
|
|
| 19 |
with open("urls.txt") as f:
|
| 20 |
urls = f.read().splitlines()
|
|
|
|
| 21 |
assert len(urls) == len(ys)
|
| 22 |
d = ys.shape[1]
|
| 23 |
index = faiss.IndexFlatL2(d)
|
| 24 |
-
index
|
| 25 |
index.add(ys)
|
|
|
|
| 26 |
tf = Compose(
|
| 27 |
[
|
| 28 |
Resize(
|
|
@@ -51,7 +56,7 @@ def f(im):
|
|
| 51 |
D, I = index.search(get_emb(im), n_outputs)
|
| 52 |
return [f"Distance: {d}\n" for d, i in zip(D[0], I[0])]
|
| 53 |
|
| 54 |
-
|
| 55 |
with gr.Blocks() as demo:
|
| 56 |
gr.Markdown(
|
| 57 |
"# Style Similarity Search\n\nFind artworks with a similar style from a small database (10k artists * 6img/artist)"
|
|
@@ -64,4 +69,5 @@ with gr.Blocks() as demo:
|
|
| 64 |
for _ in range(min(row_size, n_outputs - i * row_size)):
|
| 65 |
outputs.append(gr.Markdown(label=f"#{len(outputs) + 1}"))
|
| 66 |
btn.click(f, img, outputs)
|
|
|
|
| 67 |
demo.launch()
|
|
|
|
| 11 |
from PIL import Image
|
| 12 |
import gradio as gr
|
| 13 |
|
| 14 |
+
print("starting...")
|
| 15 |
(ys,) = np.load("embs.npz").values()
|
| 16 |
+
print("loaded embs")
|
| 17 |
model = torch.load(
|
| 18 |
"style-extractor-v0.2.0.ckpt",
|
| 19 |
map_location="cpu",
|
| 20 |
)
|
| 21 |
+
print("loaded extractor")
|
| 22 |
with open("urls.txt") as f:
|
| 23 |
urls = f.read().splitlines()
|
| 24 |
+
print("loaded urls")
|
| 25 |
assert len(urls) == len(ys)
|
| 26 |
d = ys.shape[1]
|
| 27 |
index = faiss.IndexFlatL2(d)
|
| 28 |
+
print("building index")
|
| 29 |
index.add(ys)
|
| 30 |
+
print('index built')
|
| 31 |
tf = Compose(
|
| 32 |
[
|
| 33 |
Resize(
|
|
|
|
| 56 |
D, I = index.search(get_emb(im), n_outputs)
|
| 57 |
return [f"Distance: {d}\n" for d, i in zip(D[0], I[0])]
|
| 58 |
|
| 59 |
+
print("preparing gradio")
|
| 60 |
with gr.Blocks() as demo:
|
| 61 |
gr.Markdown(
|
| 62 |
"# Style Similarity Search\n\nFind artworks with a similar style from a small database (10k artists * 6img/artist)"
|
|
|
|
| 69 |
for _ in range(min(row_size, n_outputs - i * row_size)):
|
| 70 |
outputs.append(gr.Markdown(label=f"#{len(outputs) + 1}"))
|
| 71 |
btn.click(f, img, outputs)
|
| 72 |
+
print("starting gradio")
|
| 73 |
demo.launch()
|