File size: 8,209 Bytes
4937055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# imports
import albumentations as A
import lightning as L
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.optim as optim
from albumentations.pytorch import ToTensorV2
from model import MyResNet
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import preprocess_image, show_cam_on_image
from torch import nn
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader
from torchmetrics.functional import accuracy
from torchvision import datasets, transforms

means = [0.4914, 0.4822, 0.4465]
stds = [0.2470, 0.2435, 0.2616]

class CustomResnetTransforms:
    def train_transforms(means, stds):
        return A.Compose(
                [
                    A.Normalize(mean=means, std=stds, always_apply=True),
                    A.PadIfNeeded(min_height=36, min_width=36, always_apply=True),
                    A.RandomCrop(height=32, width=32, always_apply=True),
                    A.HorizontalFlip(),
                    A.Cutout(num_holes=1, max_h_size=8, max_w_size=8, fill_value=0, p=1.0),
                    ToTensorV2(),
                ]
            )

    def test_transforms(means, stds):
         return A.Compose(
            [
                A.Normalize(mean=means, std=stds, always_apply=True),
                ToTensorV2(),
            ]
        )
    
class Cifar10SearchDataset(datasets.CIFAR10):

    def __init__(self, root="~/data", train=True, download=True, transform=None):
        super().__init__(root=root, train=train, download=download, transform=transform)

    def __getitem__(self, index):
        image, label = self.data[index], self.targets[index]
        if self.transform is not None:
            transformed = self.transform(image=image)
            image = transformed["image"]
        return image, label
    
class LitCIFAR10(L.LightningModule):
    def __init__(self, data_dir='./data', learning_rate=0.01, batch_size = 512):

        super().__init__()

        # Set our init args as class attributes
        self.data_dir = data_dir
        self.lr = learning_rate
        self.batch_size = batch_size

        # Hardcode some dataset specific attributes
        self.num_classes = 10
        self.train_transforms = CustomResnetTransforms.train_transforms(means, stds)
        self.test_transforms = CustomResnetTransforms.test_transforms(means, stds)

        # Define PyTorch model
        self.model = MyResNet()
        self.criterion = nn.CrossEntropyLoss()


    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = self.criterion(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y, task='multiclass',
                                     num_classes=10)

        # Calling self.log will surface up scalars for you in TensorBoard

        self.log("train_loss", loss, prog_bar=True, enable_graph = True, on_step=False, on_epoch=True)
        self.log("train_acc", acc, prog_bar=True, enable_graph = True, on_step=False, on_epoch=True)
        # print("train_loss", loss)
        # print("train_acc", acc)

        return loss

    def validation_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = self.criterion(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y, task='multiclass',
                                     num_classes=10)

        # Calling self.log will surface up scalars for you in TensorBoard
        self.log("val_loss", loss, prog_bar=True, enable_graph = True, on_step=False, on_epoch=True)
        self.log("val_acc", acc, prog_bar=True, enable_graph = True, on_step=False, on_epoch=True)
        return loss

    def configure_optimizers(self):
        optimizer = optim.Adam(self.parameters(), lr=self.lr, weight_decay=1e-4)

        steps_per_epoch = (len(self.trainset) // self.batch_size)+1
        scheduler_dict = {
            "scheduler": OneCycleLR(
                                    optimizer,
                                    max_lr = self.lr,
                                    steps_per_epoch=steps_per_epoch,
                                    epochs=self.trainer.max_epochs,
                                    pct_start=5/self.trainer.max_epochs,
                                    div_factor=100,
                                    three_phase=False,
                                    final_div_factor=100,
                                    anneal_strategy='linear'
                                ),
            "interval": "step",
        }
        return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}

    def setup(self, stage=None):

        # Assign train/val datasets for use in dataloaders
        self.trainset = Cifar10SearchDataset(root=self.data_dir, train=True,
                                    download=True, transform=self.train_transforms)
        self.valset = Cifar10SearchDataset(root=self.data_dir, train=False,
                                    download=True, transform=self.test_transforms)

    def train_dataloader(self):
        return DataLoader(self.trainset, batch_size=self.batch_size, num_workers=0, pin_memory=True)

    def val_dataloader(self):
        return DataLoader(self.valset, batch_size=self.batch_size, num_workers=0, pin_memory=True)

def get_misclassified_images(model, testset, mu, sigma, device):
    model.eval()
    transform=transforms.Compose([
                            transforms.ToTensor(),
                            transforms.Normalize(mu, sigma)
                        ])
    misclassified_images, misclassified_predictions, true_targets = [], [], []
    with torch.no_grad():
        for data_, target in testset:
            data = transform(data_).to(device)
            data = data.unsqueeze(0)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)

            if pred.item()!=target:
                misclassified_images.append(data_)
                misclassified_predictions.append(pred.item())
                true_targets.append(target)
    return misclassified_images, misclassified_predictions, true_targets

def plot_misclassified(image, pred, target, classes):

    nrows = 4
    ncols = 5

    _, ax = plt.subplots(nrows, ncols, figsize=(20, 15))

    for i in range(nrows):
        for j in range(ncols):
            index = i * ncols + j
            ax[i, j].axis("off")
            ax[i, j].set_title(f"Prediction: {classes[pred[index]]}\nTarget: {classes[target[index]]}")
            ax[i, j].imshow(image[index])
    plt.show()


class ClassifierOutputTarget:
    def __init__(self, category):
        self.category = category

    def __call__(self, model_output):
        if len(model_output.shape) == 1:
            return model_output[self.category]
        return model_output[:, self.category]

def plot_grad_cam_images(images, pred, target, classes, model):
    nrows = 4
    ncols = 5
    fig, ax = plt.subplots(nrows, ncols, figsize=(20,15))
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    for i in range(nrows):
        for j in range(ncols):
            index = i * ncols + j
            img = images[index]
            input_tensor = preprocess_image(img,
                                mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225])
            target_layers = [model.model.layer3[-1]]
            targets = [ClassifierOutputTarget(target[index])]
            cam = GradCAM(model=model, target_layers=target_layers, use_cuda = device)
            grayscale_cam = cam(input_tensor=input_tensor, targets = targets)
            #grayscale_cam = cam(input_tensor=input_tensor)
            grayscale_cam = grayscale_cam[0, :]
            rgb_img = np.float32(img) / 255
            visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight = 0.6)

            index = i * ncols + j
            ax[i, j].axis("off")
            ax[i, j].set_title(f"Prediction: {classes[pred[index]]}\nTarget: {classes[target[index]]}")
            ax[i, j].imshow(visualization)
    plt.show()