Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,63 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
import torch
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
from diffusers import CogVideoXImageToVideoPipeline
|
5 |
+
from diffusers.utils import export_to_video, load_image
|
6 |
+
|
7 |
+
# Load model once
|
8 |
+
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
|
9 |
+
"THUDM/CogVideoX1.5-5B-I2V",
|
10 |
+
torch_dtype=torch.bfloat16
|
11 |
+
)
|
12 |
+
pipe.enable_sequential_cpu_offload()
|
13 |
+
pipe.vae.enable_tiling()
|
14 |
+
pipe.vae.enable_slicing()
|
15 |
+
|
16 |
+
def generate_video(image, prompt):
|
17 |
+
if image is None:
|
18 |
+
raise gr.Error("Please upload an input image")
|
19 |
+
if not prompt:
|
20 |
+
raise gr.Error("Please enter a text prompt")
|
21 |
+
|
22 |
+
# Load uploaded image
|
23 |
+
input_image = load_image(image)
|
24 |
+
|
25 |
+
# Generate video
|
26 |
+
video_frames = pipe(
|
27 |
+
prompt=prompt,
|
28 |
+
image=input_image,
|
29 |
+
num_videos_per_prompt=1,
|
30 |
+
num_inference_steps=50,
|
31 |
+
num_frames=81,
|
32 |
+
guidance_scale=6,
|
33 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
34 |
+
).frames[0]
|
35 |
+
|
36 |
+
# Save to temporary file
|
37 |
+
output_path = f"output_{int(time.time())}.mp4"
|
38 |
+
export_to_video(video_frames, output_path, fps=8)
|
39 |
+
|
40 |
+
return output_path
|
41 |
+
|
42 |
+
with gr.Blocks(title="CogVideoX Image-to-Video") as demo:
|
43 |
+
gr.Markdown("# 🎥 CogVideoX Image-to-Video Generation")
|
44 |
+
gr.Markdown("Transform images into videos using AI! Upload an image and enter a description to generate a video.")
|
45 |
+
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
image_input = gr.Image(label="Input Image", type="filepath")
|
49 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the video you want to generate...")
|
50 |
+
submit_btn = gr.Button("Generate Video")
|
51 |
+
|
52 |
+
with gr.Column():
|
53 |
+
video_output = gr.Video(label="Generated Video")
|
54 |
+
gr.Examples(examples=examples, inputs=[image_input, prompt_input])
|
55 |
+
|
56 |
+
submit_btn.click(
|
57 |
+
fn=generate_video,
|
58 |
+
inputs=[image_input, prompt_input],
|
59 |
+
outputs=video_output,
|
60 |
+
)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
demo.launch()
|