File size: 5,448 Bytes
0a3ce35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, HoverTool, Arrow, NormalHead
from bokeh.palettes import Spectral4
from bokeh.embed import components
import sqlite3
import pandas as pd


def get_tickers(pattern, last_dates=1):
    # connect to database
    with sqlite3.connect("dataset/ihsg.db") as con:

        # retrieve data from database
        tickers = pd.read_sql(f"""
            SELECT Kode 
            FROM patterns
            WHERE Date IN (
                SELECT Date 
                FROM (
                    SELECT Date, ROW_NUMBER() OVER(ORDER BY Date DESC) AS rnk
                    FROM historical
                    WHERE Kode = 'IHSG'
                ) a 
                WHERE rnk <= {last_dates + 1}
            )
            AND Pattern = '{pattern}'
            ORDER BY Pattern_Score DESC, Open_Close_Change DESC, High_Low_Change DESC
        """,
        con=con,
        ).iloc[:, 0].to_list()

    return tickers

def get_data(kode, pattern):

    # connect to database
    with sqlite3.connect("dataset/ihsg.db") as con:

        # retrieve data from database
        df = pd.read_sql(f"""
            SELECT *
            FROM historical
            WHERE Kode = '{kode}'
            ORDER BY Date
        """, 
        con=con, 
        parse_dates=['Date'],
        )
        
        # df = pd.read_sql(f"""
        #     SELECT 
        #         historical.Date,
        #         historical.Open,
        #         historical.High,
        #         historical.Low,
        #         historical.Close, 
        #         patterns.Pattern_Score
        #     FROM historical
        #     LEFT JOIN (
        #         SELECT Date, Kode, Pattern_Score
        #         FROM patterns
        #         WHERE Pattern = '{pattern}'
        #     ) AS patterns
        #     USING(Kode, Date)
        #     WHERE Kode = '{kode}'
        #     ORDER BY Date
        # """, 
        # con=con, 
        # parse_dates=['Date'],
        # )

        nama = pd.read_sql(
            f"SELECT Nama FROM list_perusahaan WHERE Kode = '{kode}'", 
            con=con,
        ).values[0][0]

    return df, nama

def plot_candlestick(df, nama, kode):
    
    # calculate simple moving average
    for period in [5,20,200]:
        df[f'sma{period}'] = df['Close'].rolling(period, period).mean()
        
    # Prepare data for plotting
    cds = ColumnDataSource(df)
    cds_inc = ColumnDataSource(df[df["Close"] >= df["Open"]])
    cds_dec = ColumnDataSource(df[df["Open"] > df["Close"]])
    
    # assign figure canvas to variable p
    x_range = (max(len(df) - 60.5, 0), len(df))
    p = figure(
        tools="pan,zoom_in,zoom_out,box_zoom,undo,redo,reset,save", 
        plot_width=600, 
        plot_height=400,
        title = f"{kode}\t({nama})",
        x_range= x_range,
        y_range= (
            df.loc[x_range[0]//1-5:x_range[1], ["Open", "High", "Low", "Close", "sma5", "sma20", "sma200"]].min().min() * 0.875, 
            df.loc[x_range[0]//1-5:x_range[1], ["Open", "High", "Low", "Close", "sma5", "sma20", "sma200"]].max().max() * 1.125
        )
    )
    
    # xaxis setup
    p.xaxis.major_label_overrides = {
    i: date.strftime('%d %b %Y') for i, date in enumerate(df["Date"])
    }
    p.xaxis.bounds = (0, df.index[-1])
    p.xaxis.major_label_orientation = (22/7)/4
    p.grid.grid_line_alpha=0.3
    
    # # plot pattern arrow
    # for idx in df[df["Pattern_Score"].notna()].tail().index:
    #     row = df.loc[idx, ["Open", "High", "Low", "Close"]]
    #     x_start = row.min()
    #     if x_start < 200:
    #         x_start -= 2
    #         x_end = x_start - 4
    #     elif x_start < 500:
    #         x_start -= 4
    #         x_end = x_start - 4
    #     else:
    #         x_start -= 8
    #         x_end = x_start - 6
    #     p.add_layout(Arrow(
    #         end=NormalHead(fill_color="black"), 
    #         line_color="black",
    #         x_start = x_start,
    #         x_end = x_end,
    #         y_start = idx,
    #         y_end=idx
    #     ))
        

    # plot candlestick wicks with HoverTool
    p.add_tools(HoverTool(
        renderers=[p.segment("index", "High", "index", "Low", source=cds, color="black", line_width=1)],
        tooltips=[
            ("Date","@Date{%F}"),
            ("Open","@Open{0.2f}"),
            ("High", "@High{0.2f}"),
            ("Low", "@Low{0.2f}"),
            ("Close", "@Close{0.2f}"),
        ],
        formatters={"@Date":"datetime"}
    ))

    # plot candlestick bars
    for data, color in [(cds_inc, "#26a69a"), (cds_dec, "#ef5350")]:
        p.vbar("index", 0.5, "Open", "Close", source=data, fill_color=color, line_color="black", line_width=1)
    
    # plot moving average with HoverTool
    for period, color in zip([5,20,200], Spectral4):
        p.add_tools(HoverTool(
            renderers=[p.line(
                "index", 
                f"sma{period}", 
                source=cds, 
                line_width=2, 
                alpha=0.8, 
                color=color, 
                legend_label=f'SMA {period}\t')],
            tooltips=[
                (f"SMA {period}", "@sma%s{0.2f}" %(period)),
            ],
        ))
    
    # legend setup
    p.legend.location = "top_left"
    p.legend.click_policy="hide"
    p.legend.orientation="horizontal"
    
    # generate script and div
    script, div = components(p)

    return script, div