|
import os |
|
import logging |
|
import gradio as gr |
|
import pandas as pd |
|
from api import GAIAHFAPIClient |
|
from agents.agent import BasicAgent, SimpleGeminiAgent |
|
import random |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s [%(levelname)s] %(name)s: %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S" |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
api_client = GAIAHFAPIClient(profile=profile) |
|
agent = SimpleGeminiAgent() |
|
|
|
questions_data, error = api_client.get_questions() |
|
if error is None or questions_data is None: |
|
return questions_data, error |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
logger.info(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
logger.warning(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
logger.error(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
logger.warning("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": api_client.username.strip(), "agent_code": api_client.agent_code, "answers": answers_payload} |
|
logger.info(f"Agent finished. Submitting {len(answers_payload)} answers for user '{api_client.username}'...") |
|
|
|
|
|
logger.info(f"Submitting {len(answers_payload)} answers to: {api_client.submit_url}") |
|
status_message, results_df = api_client.submit_answers(submission_data, results_log) |
|
return status_message, results_df |
|
|
|
def run_and_submit_one(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
api_client = GAIAHFAPIClient(profile=profile) |
|
agent = SimpleGeminiAgent() |
|
|
|
questions_data, error = api_client.get_questions() |
|
if error is None or questions_data is None: |
|
return questions_data, error |
|
question_data = random.choice(questions_data) |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
|
|
task_id = question_data.get("task_id") |
|
question_text = question_data.get("question") |
|
if not task_id or question_text is None: |
|
logger.warning(f"Skipping item with missing task_id or question: {question_data}") |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
logger.error(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
logger.warning("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": api_client.username.strip(), "agent_code": api_client.agent_code, "answers": answers_payload} |
|
logger.info(f"Agent finished. Submitting {len(answers_payload)} answers for user '{api_client.username}'...") |
|
|
|
|
|
logger.info(f"Submitting {len(answers_payload)} answers to: {api_client.submit_url}") |
|
status_message, results_df = api_client.submit_answers(submission_data, results_log) |
|
return status_message, results_df |
|
|
|
def build_gradio_interface(): |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_all_button = gr.Button("Run Evaluation & Submit All Answers") |
|
run_one_button = gr.Button("Run a Single Evaluation") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_all_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
run_one_button.click( |
|
fn=run_and_submit_one, |
|
outputs=[status_output, results_table] |
|
) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo = build_gradio_interface() |
|
demo.launch(debug=True, share=False) |