File size: 8,303 Bytes
2f153ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
from transformers import AutoTokenizer, AutoConfig, pipeline
import torch
import os
from torch import nn
from torch.nn import Dropout
from transformers import XLMRobertaForSequenceClassification

HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-sentiment")

# Define the CustomModel class which is predicting Both SENTIMENT POLARITY & EMOTIONS
class CustomModel(XLMRobertaForSequenceClassification):
    def __init__(self, config, num_emotion_labels):
        super(CustomModel, self).__init__(config)
        self.num_emotion_labels = num_emotion_labels
        self.dropout_emotion = nn.Dropout(config.hidden_dropout_prob)
        self.emotion_classifier = nn.Sequential(
            nn.Linear(config.hidden_size, 512),
            nn.Mish(),
            nn.Dropout(0.3),
            nn.Linear(512, num_emotion_labels)
        )
        self._init_weights(self.emotion_classifier[0])
        self._init_weights(self.emotion_classifier[3])

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()

    def forward(self, input_ids=None, attention_mask=None, sentiment=None, labels=None):
        outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
        sequence_output = outputs[0]
        if len(sequence_output.shape) != 3:
            raise ValueError(f"Expected sequence_output to have 3 dimensions, got {sequence_output.shape}")
        cls_hidden_states = sequence_output[:, 0, :]
        cls_hidden_states = self.dropout_emotion(cls_hidden_states)
        emotion_logits = self.emotion_classifier(cls_hidden_states)
        with torch.no_grad():
            cls_token_state = sequence_output[:, 0, :].unsqueeze(1)
            sentiment_logits = self.classifier(cls_token_state).squeeze(1)
        if labels is not None:
            class_weights = torch.tensor([1.0] * self.num_emotion_labels).to(labels.device)
            loss_fct = nn.BCEWithLogitsLoss(pos_weight=class_weights)
            loss = loss_fct(emotion_logits, labels)
            return {"loss": loss, "emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits}
        return {"emotion_logits": emotion_logits, "sentiment_logits": sentiment_logits}

# Load the tokenizer and model from the local directory
model_dir = "gsar78/HellenicSentimentAI_v2"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
config = AutoConfig.from_pretrained(model_dir)
model = CustomModel.from_pretrained(model_dir, config=config, num_emotion_labels=18)

# Function to predict sentiment and emotion
def predict(texts):
    # Tokenize the input texts
    inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)

    # Move inputs to the same device as the model
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    inputs = {k: v.to(device) for k, v in inputs.items()}

    # Ensure the model is on the correct device
    model.to(device)
    model.eval()  # Set the model to evaluation mode

    # Clear any gradients
    model.zero_grad()

    # Get model predictions
    with torch.no_grad():
        outputs = model(**inputs)

    # Extract logits
    emotion_logits = outputs["emotion_logits"]
    sentiment_logits = outputs["sentiment_logits"]

    # Convert logits to probabilities
    emotion_probs = torch.sigmoid(emotion_logits)
    sentiment_probs = torch.softmax(sentiment_logits, dim=1)

    # Convert tensors to lists for easier handling
    emotion_probs_list = (emotion_probs * 100).tolist()  # Convert to %
    sentiment_probs_list = (sentiment_probs * 100).tolist()  # Convert to %

    # Define the sentiment and emotion labels
    sentiment_labels = ['negative', 'neutral', 'positive']
    emotion_labels = [
        'joy', 'trust', 'excitement', 'gratitude', 'hope', 'love', 'pride',
        'anger', 'disgust', 'fear', 'sadness', 'anxiety', 'frustration', 'guilt',
        'disappointment', 'surprise', 'anticipation', 'neutral'
    ]

    # Threshold for displaying probabilities
    threshold = 0.0

    # Map emotion probabilities to their corresponding labels
    emotion_results = [
        {label: prob for label, prob in zip(emotion_labels, emotion_probs_sample) if prob > 10.0}
        for emotion_probs_sample in emotion_probs_list
    ]

    # Map sentiment probabilities to their corresponding labels
    sentiment_results = [
        {label: prob for label, prob in zip(sentiment_labels, sentiment_probs_sample) if prob > threshold}
        for sentiment_probs_sample in sentiment_probs_list
    ]

    return emotion_results, sentiment_results

def sentiment_analysis_generate_table(text):
    sentences = text.split('|')
    emotion_results, sentiment_results = predict(sentences)

    # Generate the HTML table with enhanced colors and bold headers
    html = """
    <html>
    <head>
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bootstrap.min.css">
    <style>
    .label {
        transition: .15s;
        border-radius: 8px;
        padding: 5px 10px;
        font-size: 14px;
        text-transform: uppercase;
    }
    .positive {
        background-color: rgb(54, 176, 75);
        color: white;
    }
    .negative {
        background-color: rgb(237, 83, 80);
        color: white;
    }
    .neutral {
        background-color: rgb(255, 165, 0);
        color: white;
    }
    th {
        font-weight: bold;
        color: rgb(106, 38, 198);
    }
    </style>
    </head>
    <body>
    <table class="table table-striped">
    <thead>
        <tr>
            <th scope="col">Text</th>
            <th scope="col">Score</th>
            <th scope="col">Sentiment</th>
            <th scope="col">Emotions</th>
        </tr>
    </thead>
    <tbody>
    """
    for sentence, emotions, sentiment in zip(sentences, emotion_results, sentiment_results):
        text = sentence.strip()
        sentiment_label = max(sentiment, key=sentiment.get)
        score = f"{sentiment[sentiment_label]:.2f}%"
        
        # Determine the sentiment class
        if sentiment_label.lower() == "positive":
            sentiment_class = "positive"
        elif sentiment_label.lower() == "negative":
            sentiment_class = "negative"
        else:
            sentiment_class = "neutral"

        # Generate emotion tags
        emotion_tags = ", ".join([f"{label} ({prob:.2f}%)" for label, prob in emotions.items()])

        # Generate table rows
        html += f'<tr><td>{text}</td><td>{score}</td><td><span class="label {sentiment_class}">{sentiment_label}</span></td><td>{emotion_tags}</td></tr>'

    html += """
    </tbody>
    </table>
    </body>
    </html>
    """

    return html

if __name__ == "__main__":
    iface = gr.Interface(
        fn=sentiment_analysis_generate_table,
        inputs=gr.Textbox(placeholder="Enter sentence here..."),
        outputs=gr.HTML(),
        title="Hellenic Sentiment AI - Version 2.0",
        description="A sentiment & emotion analysis model, primarily for the Greek language.<br>"
                    "Type in some text in Greek, to classify its sentiment & emotion: positive, neutral, or negative, along with detected emotions.<br>"
                    "Multiple sentences can be classified when separated by the | character.<br>"
                    "Version 2.0 - Developed by GeoSar",
        examples=[
            ["Η πικάντικη γεύση αυτής της σούπας λαχανικών ήταν ακριβώς αυτό που χρειαζόμουν σήμερα. Είχε μια ωραία γαργαλιστική αίσθηση χωρίς να είναι πολύ καυτερή."],
            ["Η πίτσα ήταν καμένη και τα υλικά φθηνής ποιότητας. Σίγουρα δεν θα ξαναπαραγγείλω από εκεί."]
        ],
        allow_flagging="manual",
        flagging_options=["Incorrect", "Ambiguous"],
        flagging_callback=hf_writer,
        examples_per_page=2,
        allow_duplication=False,
        concurrency_limit="default"
    )

    iface.launch(share=True)