Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,29 @@ model = AutoModelForSequenceClassification.from_pretrained("gsar78/Greek_Sentime
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("gsar78/Greek_Sentiment")
|
7 |
|
8 |
def predict(text):
|
|
|
9 |
inputs = tokenizer(text, return_tensors="pt")
|
|
|
10 |
outputs = model(**inputs)
|
|
|
11 |
scores = torch.nn.functional.softmax(outputs.logits, dim=1)
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
iface = gr.Interface(
|
15 |
fn=predict,
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("gsar78/Greek_Sentiment")
|
7 |
|
8 |
def predict(text):
|
9 |
+
# Tokenize the input text
|
10 |
inputs = tokenizer(text, return_tensors="pt")
|
11 |
+
# Get the model outputs
|
12 |
outputs = model(**inputs)
|
13 |
+
# Apply softmax to the logits to get probabilities
|
14 |
scores = torch.nn.functional.softmax(outputs.logits, dim=1)
|
15 |
+
# Get the predicted label
|
16 |
+
predicted_label_idx = scores.argmax(dim=1).item()
|
17 |
+
labels = ["negative", "neutral", "positive"]
|
18 |
+
predicted_label = labels[predicted_label_idx]
|
19 |
+
confidence_score = scores[0, predicted_label_idx].item()
|
20 |
+
# Create a dictionary with the prediction and scores
|
21 |
+
result = {
|
22 |
+
"text": text,
|
23 |
+
"label": predicted_label,
|
24 |
+
"score": confidence_score,
|
25 |
+
"scores": {
|
26 |
+
"positive": scores[0, 2].item(),
|
27 |
+
"neutral": scores[0, 1].item(),
|
28 |
+
"negative": scores[0, 0].item()
|
29 |
+
}
|
30 |
+
}
|
31 |
+
return result
|
32 |
|
33 |
iface = gr.Interface(
|
34 |
fn=predict,
|