Spaces:
Sleeping
Sleeping
File size: 9,935 Bytes
59d5e33 1f95777 151c2dd 037af6c 9c1234d 5cad0cc 151c2dd 96538e7 151c2dd 5cad0cc 151c2dd 1f95777 5cad0cc 151c2dd 0227a07 1ec143e 151c2dd 561abab 151c2dd 0227a07 1ec143e a604031 151c2dd 5cad0cc 1f95777 5cad0cc 1f95777 0227a07 59d5e33 0227a07 1f95777 0227a07 a604031 1f95777 0227a07 1f95777 a604031 1f95777 0227a07 6e5749a 0227a07 59d5e33 0227a07 2164d57 6e5749a 0227a07 2164d57 6e5749a 5cad0cc 14029bd 5cad0cc 14029bd 0227a07 14029bd 0227a07 2decb45 5cad0cc 2decb45 5cad0cc 0227a07 5cad0cc 0227a07 5cad0cc dc5c663 0227a07 5cad0cc 0227a07 5cad0cc 0227a07 5cad0cc 6e5749a 5cad0cc 0227a07 5cad0cc 0227a07 5cad0cc 0227a07 5cad0cc 0227a07 5cad0cc dc5c663 0227a07 6e5749a 0227a07 6e5749a 0227a07 6e5749a 0227a07 151c2dd 0e7333a 151c2dd 0e7333a 1f95777 561abab 1f95777 561abab 1f95777 14029bd 561abab 0227a07 164690b 0e7333a 151c2dd 0227a07 0e7333a 2164d57 164690b ad98547 0e7333a 164690b 2164d57 ad98547 0227a07 2164d57 5cad0cc 0227a07 9c1234d 14029bd 2164d57 0227a07 0e7333a 2164d57 0e7333a 2164d57 ad98547 2164d57 0e7333a ad98547 0e7333a 0227a07 151c2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from os import makedirs, remove
from os.path import exists, dirname
from functools import cache
import json
import streamlit as st
from googleapiclient.discovery import build
from slugify import slugify
from transformers import pipeline
import uuid
import spacy
from spacy.matcher import PhraseMatcher
from beautiful_soup.beautiful_soup import get_url_content
@cache
def google_search_api_request( query ):
"""
Request Google Search API with query and return results.
"""
service = build(
"customsearch",
"v1",
developerKey=st.secrets["google_search_api_key"],
cache_discovery=False
)
# Exclude PDFs from search results.
query = query + ' -filetype:pdf'
return service.cse().list(
q=query,
cx=st.secrets["google_search_engine_id"],
num=5,
lr='lang_en', # lang_de
fields='items(title,link),searchInformation(totalResults)'
).execute()
def search_results( query ):
"""
Request Google Search API with query and return results. Results are cached in files.
"""
file_path = 'search-results/' + slugify( query ) + '.json'
# Create cache directory if it doesn't exist.
makedirs(dirname(file_path), exist_ok=True)
results = []
# Check if cache file exists.
if exists( file_path ):
with open( file_path, 'r' ) as results_file:
results = json.load( results_file )
else:
search_result = google_search_api_request( query )
# Check if search contains results.
if int( search_result['searchInformation']['totalResults'] ) > 0:
results = search_result['items']
# Save results to cache file.
with open( file_path, 'w' ) as results_file:
json.dump( results, results_file )
if len( results ) == 0:
raise Exception('No results found.')
return results
def get_summary( url, keywords ):
url_id = uuid.uuid5( uuid.NAMESPACE_URL, url ).hex
file_path = 'summaries/' + url_id + '.json'
# Create cache directory if it doesn't exist.
makedirs(dirname(file_path), exist_ok=True)
# Check if cache file exists.
if exists( file_path ):
with open( file_path, 'r' ) as file:
summary = json.load( file )
else:
try:
strings = get_url_content( url )
content_cache = 'content/' + url_id + '.txt'
# Create cache directory if it doesn't exist.
makedirs(dirname(content_cache), exist_ok=True)
# Check if content cache file exists.
if exists( content_cache ):
with open( content_cache, 'r' ) as file:
content = file
else:
content = prep_chunks_summary( strings, keywords )
# Save content to cache file.
with open( content_cache, 'w' ) as file:
file.write( content )
# Generate summary from compiled content.
summary = generate_summary( content, 200 )
except Exception as exception:
raise exception
# Save results to cache file.
with open( file_path, 'w' ) as file:
json.dump( summary, file )
return summary
def generate_summary( content, max_length ):
"""
Generate summary for content.
"""
try:
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
# https://huggingface.co/docs/transformers/v4.18.0/en/main_classes/pipelines#transformers.SummarizationPipeline
summary = summarizer(content, max_length, min_length=30, do_sample=False, truncation=True)
except Exception as exception:
raise exception
return summary
def exception_notice( exception ):
"""
Helper function for exception notices.
"""
query_params = st.experimental_get_query_params()
# If debug mode is enabled, show exception else show warning.
if 'debug' in query_params.keys() and query_params['debug'][0] == 'true':
st.exception(exception)
else:
st.warning(str(exception))
# Unused function.
def is_keyword_in_string( keywords, string ):
"""
Checks if string contains keyword.
"""
for keyword in keywords:
if keyword in string:
return True
return False
def filter_sentences_by_keywords( strings, keywords ):
"""
Filter sentences by keywords using spacy.
"""
nlp = spacy.load("en_core_web_sm")
matcher = PhraseMatcher(nlp.vocab)
# Add keywords to matcher.
patterns = [nlp(keyword) for keyword in keywords]
matcher.add("QueryList", patterns)
sentences = []
for string in strings:
# Exclude sentences shorten than 5 words.
string_length = len( string.split(' ') )
if string_length < 5:
continue
# Loop through sentences and check if any of the keywords are in the sentence.
doc = nlp(string)
for sentence in doc.sents:
matches = matcher(nlp(sentence.text))
for match_id, start, end in matches:
# If keyword is in sentence, add sentence to list.
if nlp.vocab.strings[match_id] in ["QueryList"]:
sentences.append(sentence.text)
if ( len(sentences) == 0 ):
raise Exception('No sentences with keywords found.')
return sentences
def split_content_into_chunks( sentences ):
"""
Split content into chunks.
"""
chunk = ''
word_count = 0
chunks = []
# Loop through sentences and split into chunks.
for sentence in sentences:
# Count words in sentence.
sentence_word_count = len(sentence.split(' '))
# If the word count plus the current sentence is larger then 512, start a new chunk.
if word_count + sentence_word_count > 512:
chunks.append(chunk)
chunk = '' # Reset chunk.
word_count = 0 # Reset word count.
# Add sentence to chunk.
word_count += sentence_word_count
chunk += sentence + ' '
chunks.append(chunk)
return chunks
def prep_chunks_summary( strings, keywords ):
"""
Chunk summary.
"""
try:
sentences = filter_sentences_by_keywords( strings, keywords )
chunks = split_content_into_chunks( sentences )
number_of_chunks = len( chunks )
# Loop through chunks if there are more than one.
if number_of_chunks > 1:
# Calculate the max summary length based on the number of chunks so that the final combined text is not longer than 512 tokens.
max_length = int( 512 / number_of_chunks )
content = ''
# Loop through chunks and generate summary.
for chunk in chunks:
# Rudementary method to count number of tokens in a chunk.
chunk_length = len( chunk.split(' ') )
# If chunk is shorter than max length, divide chunk length by 2.
if chunk_length < max_length:
max_length = int( chunk_length / 2 )
# Generate summary for chunk.
chunk_summary = generate_summary( chunk, max_length )
for summary in chunk_summary:
content += summary['summary_text'] + ' '
else:
content = chunks[0]
return content
except Exception as exception:
raise exception
def main():
st.title('Racoon Search')
query = st.text_input('Search query')
query_params = st.experimental_get_query_params()
if query :
with st.spinner('Loading search results...'):
try:
results = search_results( query )
except Exception as exception:
exception_notice(exception)
return
# Count results.
number_of_results = len( results )
st.success( 'Found {} results for "{}".'.format( number_of_results, query ) )
# If debug mode is enabled, show search results in JSON.
if 'debug' in query_params.keys() and query_params['debug'][0] == 'true':
with st.expander("Search results JSON"):
if st.button('Delete search result cache', key=query + 'cache'):
remove( 'search-results/' + slugify( query ) + '.json' )
st.json( results )
progress_bar = st.progress(0)
st.header('Search results')
st.markdown('---')
# for result in results:
for index, result in enumerate(results):
with st.container():
st.markdown('### ' + result['title'])
# Create a unique id for the result.
url_id = uuid.uuid5( uuid.NAMESPACE_URL, result['link'] ).hex
# List of query keywords.
keywords = query.split(' ')
try :
# Create summary of summarized content.
summary = get_summary( result['link'], keywords )
st.markdown(summary[0]['summary_text'])
except Exception as exception:
exception_notice(exception)
progress_bar.progress( ( index + 1 ) / number_of_results )
# Show links and buttons.
col1, col2, col3 = st.columns(3)
with col1:
st.markdown('[Website Link]({})'.format(result['link']))
with col2:
if st.button('Delete content from cache', key=url_id + 'content'):
remove( 'page-content/' + url_id + '.txt' )
with col3:
if st.button('Delete summary from cache', key=url_id + 'summary'):
remove( 'summaries/' + url_id + '.json' )
st.markdown('---')
if __name__ == '__main__':
main()
|