Spaces:
Sleeping
Sleeping
File size: 7,723 Bytes
59d5e33 1f95777 151c2dd 037af6c 9c1234d 5cad0cc 151c2dd 96538e7 151c2dd 5cad0cc 151c2dd 1f95777 5cad0cc e95e6f0 151c2dd 1ec143e 151c2dd 561abab 151c2dd e95e6f0 1ec143e a604031 151c2dd 5cad0cc 1f95777 5cad0cc 1f95777 59d5e33 1f95777 a604031 1f95777 a604031 1f95777 5cad0cc 2164d57 59d5e33 2164d57 5cad0cc 2164d57 5cad0cc 14029bd 5cad0cc 14029bd 2decb45 5cad0cc 2decb45 5cad0cc dc5c663 5cad0cc dc5c663 151c2dd 0e7333a 151c2dd 0e7333a 1f95777 561abab 1f95777 561abab 1f95777 14029bd 561abab 164690b 0e7333a 151c2dd 0e7333a 2164d57 164690b ad98547 0e7333a 164690b 2164d57 ad98547 2164d57 9c1234d 5cad0cc 9c1234d 14029bd 2164d57 0e7333a 2164d57 0e7333a 2164d57 ad98547 2164d57 0e7333a ad98547 0e7333a 164690b 151c2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from os import makedirs, remove
from os.path import exists, dirname
from functools import cache
import json
import streamlit as st
from googleapiclient.discovery import build
from slugify import slugify
from transformers import pipeline
import uuid
import spacy
from spacy.matcher import PhraseMatcher
from beautiful_soup.beautiful_soup import get_url_content
@cache
def google_search_api_request( query ):
"""
Request Google Search API with query and return results.
"""
api_key = st.secrets["google_search_api_key"]
cx = st.secrets["google_search_engine_id"]
service = build(
"customsearch",
"v1",
developerKey=api_key,
cache_discovery=False
)
# Exclude PDFs from search results.
query = query + ' -filetype:pdf'
return service.cse().list(
q=query,
cx=cx,
num=5,
lr='lang_en', # lang_de
fields='items(title,link),searchInformation(totalResults)'
).execute()
def search_results( query ):
"""
Request Google Search API with query and return results. Results are cached in files.
"""
file_path = 'search-results/' + slugify( query ) + '.json'
results = []
makedirs(dirname(file_path), exist_ok=True)
if exists( file_path ):
with open( file_path, 'r' ) as results_file:
results = json.load( results_file )
else:
search_result = google_search_api_request( query )
if int( search_result['searchInformation']['totalResults'] ) > 0:
results = search_result['items']
with open( file_path, 'w' ) as results_file:
json.dump( results, results_file )
if len( results ) == 0:
raise Exception('No results found.')
return results
def get_summary( url_id, content ):
file_path = 'summaries/' + url_id + '.json'
makedirs(dirname(file_path), exist_ok=True)
if exists( file_path ):
with open( file_path, 'r' ) as file:
summary = json.load( file )
else:
summary = generate_summary( content )
with open( file_path, 'w' ) as file:
json.dump( summary, file )
return summary
def generate_summary( content, max_length = 200 ):
"""
Generate summary for content.
"""
try:
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
# https://huggingface.co/docs/transformers/v4.18.0/en/main_classes/pipelines#transformers.SummarizationPipeline
summary = summarizer(content, max_length, min_length=30, do_sample=False, truncation=True)
except Exception as exception:
raise exception
return summary
def exception_notice( exception ):
"""
Helper function for exception notices.
"""
query_params = st.experimental_get_query_params()
if 'debug' in query_params.keys() and query_params['debug'][0] == 'true':
st.exception(exception)
else:
st.warning(str(exception))
def is_keyword_in_string( keywords, string ):
"""
Checks if string contains keyword.
"""
for keyword in keywords:
if keyword in string:
return True
return False
def filter_sentences_by_keywords( strings, keywords ):
nlp = spacy.load("en_core_web_sm")
matcher = PhraseMatcher(nlp.vocab)
phrases = keywords
patterns = [nlp(phrase) for phrase in phrases]
matcher.add("QueryList", patterns)
sentences = []
for string in strings:
# Exclude short sentences
string_length = len( string.split(' ') )
if string_length < 5:
continue
doc = nlp(string)
for sentence in doc.sents:
matches = matcher(nlp(sentence.text))
for match_id, start, end in matches:
if nlp.vocab.strings[match_id] in ["QueryList"]:
sentences.append(sentence.text)
return sentences
def split_content_into_chunks( sentences ):
"""
Split content into chunks.
"""
chunk = ''
word_count = 0
chunks = []
for sentence in sentences:
current_word_count = len(sentence.split(' '))
if word_count + current_word_count > 512:
st.write("Number of words(tokens): {}".format(word_count))
chunks.append(chunk)
chunk = ''
word_count = 0
word_count += current_word_count
chunk += sentence + ' '
st.write("Number of words(tokens): {}".format(word_count))
chunks.append(chunk)
return chunks
def main():
st.title('Racoon Search')
query = st.text_input('Search query')
query_params = st.experimental_get_query_params()
if query :
with st.spinner('Loading search results...'):
try:
results = search_results( query )
except Exception as exception:
exception_notice(exception)
return
number_of_results = len( results )
st.success( 'Found {} results for "{}".'.format( number_of_results, query ) )
if 'debug' in query_params.keys() and query_params['debug'][0] == 'true':
with st.expander("Search results JSON"):
if st.button('Delete search result cache', key=query + 'cache'):
remove( 'search-results/' + slugify( query ) + '.json' )
st.json( results )
progress_bar = st.progress(0)
st.header('Search results')
st.markdown('---')
# for result in results:
for index, result in enumerate(results):
with st.container():
st.markdown('### ' + result['title'])
url_id = uuid.uuid5( uuid.NAMESPACE_URL, result['link'] ).hex
try:
strings = get_url_content( result['link'] )
keywords = query.split(' ')
sentences = filter_sentences_by_keywords( strings, keywords )
chunks = split_content_into_chunks( sentences )
number_of_chunks = len( chunks )
if number_of_chunks > 1:
max_length = int( 512 / len( chunks ) )
st.write("Max length: {}".format(max_length))
content = ''
for chunk in chunks:
chunk_length = len( chunk.split(' ') )
chunk_max_length = 200
if chunk_length < max_length:
chunk_max_length = int( chunk_length / 2 )
chunk_summary = generate_summary( chunk, min( max_length, chunk_max_length ) )
for summary in chunk_summary:
content += summary['summary_text'] + ' '
else:
content = chunks[0]
summary = get_summary( url_id, content )
except Exception as exception:
exception_notice(exception)
progress_bar.progress( ( index + 1 ) / number_of_results )
col1, col2, col3 = st.columns(3)
with col1:
st.markdown('[Website Link]({})'.format(result['link']))
with col2:
if st.button('Delete content from cache', key=url_id + 'content'):
remove( 'page-content/' + url_id + '.txt' )
with col3:
if st.button('Delete summary from cache', key=url_id + 'summary'):
remove( 'summaries/' + url_id + '.json' )
st.markdown('---')
if __name__ == '__main__':
main()
|