File size: 7,723 Bytes
59d5e33
 
1f95777
 
151c2dd
 
 
037af6c
9c1234d
5cad0cc
 
151c2dd
96538e7
151c2dd
5cad0cc
151c2dd
1f95777
5cad0cc
 
 
 
e95e6f0
 
151c2dd
 
 
 
1ec143e
151c2dd
 
561abab
 
 
151c2dd
 
e95e6f0
1ec143e
a604031
 
151c2dd
 
5cad0cc
1f95777
5cad0cc
 
 
1f95777
 
 
59d5e33
1f95777
 
 
 
 
a604031
1f95777
 
 
 
a604031
1f95777
 
 
 
5cad0cc
2164d57
59d5e33
2164d57
 
 
 
5cad0cc
2164d57
 
 
 
 
 
5cad0cc
 
 
 
 
 
 
 
 
 
 
 
 
14029bd
5cad0cc
 
 
14029bd
 
 
 
 
 
2decb45
5cad0cc
 
 
2decb45
 
 
 
 
5cad0cc
 
 
 
 
 
 
 
dc5c663
5cad0cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5c663
151c2dd
0e7333a
151c2dd
0e7333a
 
1f95777
561abab
1f95777
561abab
1f95777
14029bd
561abab
 
164690b
0e7333a
151c2dd
0e7333a
 
 
 
 
2164d57
164690b
ad98547
 
0e7333a
164690b
 
 
2164d57
ad98547
2164d57
9c1234d
5cad0cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c1234d
14029bd
2164d57
 
 
0e7333a
2164d57
0e7333a
2164d57
 
ad98547
2164d57
0e7333a
 
ad98547
0e7333a
 
 
164690b
151c2dd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from os import makedirs, remove
from os.path import exists, dirname
from functools import cache
import json
import streamlit as st
from googleapiclient.discovery import build
from slugify import slugify
from transformers import pipeline
import uuid
import spacy
from spacy.matcher import PhraseMatcher

from beautiful_soup.beautiful_soup import get_url_content


@cache
def google_search_api_request( query ):
    """
    Request Google Search API with query and return results.
    """

    api_key = st.secrets["google_search_api_key"]
    cx = st.secrets["google_search_engine_id"]
    service = build(
        "customsearch",
        "v1",
        developerKey=api_key,
        cache_discovery=False
    )

    # Exclude PDFs from search results.
    query = query + ' -filetype:pdf'

    return service.cse().list(
        q=query,
        cx=cx,
        num=5,
        lr='lang_en', # lang_de
        fields='items(title,link),searchInformation(totalResults)'
        ).execute()


def search_results( query ):
    """
    Request Google Search API with query and return results. Results are cached in files.
    """
    file_path = 'search-results/' + slugify( query ) + '.json'

    results = []
    makedirs(dirname(file_path), exist_ok=True)
    if exists( file_path ):
        with open( file_path, 'r' ) as results_file:
            results = json.load( results_file )
    else:
        search_result = google_search_api_request( query )
        if int( search_result['searchInformation']['totalResults'] ) > 0:
            results = search_result['items']
            with open( file_path, 'w' ) as results_file:
                json.dump( results, results_file )

    if len( results ) == 0:
        raise Exception('No results found.')
    
    return results

def get_summary( url_id, content ):
    file_path = 'summaries/' + url_id + '.json'
    makedirs(dirname(file_path), exist_ok=True)
    if exists( file_path ):
        with open( file_path, 'r' ) as file:
            summary = json.load( file )
    else:
        summary = generate_summary( content )

        with open( file_path, 'w' ) as file:
            json.dump( summary, file )
    
    return summary

def generate_summary( content, max_length = 200 ):
    """
    Generate summary for content.
    """
    try:
        summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
        # https://huggingface.co/docs/transformers/v4.18.0/en/main_classes/pipelines#transformers.SummarizationPipeline
        summary = summarizer(content, max_length, min_length=30, do_sample=False, truncation=True)
    except Exception as exception:
        raise exception
    
    return summary

def exception_notice( exception ):
    """
    Helper function for exception notices.
    """
    query_params = st.experimental_get_query_params()
    if 'debug' in query_params.keys() and query_params['debug'][0] == 'true':
        st.exception(exception)
    else:
        st.warning(str(exception))

def is_keyword_in_string( keywords, string ):
    """
    Checks if string contains keyword.
    """
    for keyword in keywords:
        if keyword in string:
            return True
    return False

def filter_sentences_by_keywords( strings, keywords ):
    nlp = spacy.load("en_core_web_sm")
    matcher = PhraseMatcher(nlp.vocab)
    phrases = keywords
    patterns = [nlp(phrase) for phrase in phrases]
    matcher.add("QueryList", patterns)

    sentences = []
    for string in strings:
        # Exclude short sentences
        string_length = len( string.split(' ') )
        if string_length < 5:
            continue
        doc = nlp(string)
        for sentence in doc.sents:
            matches = matcher(nlp(sentence.text))
            for match_id, start, end in matches:
                if nlp.vocab.strings[match_id] in ["QueryList"]:
                    sentences.append(sentence.text) 

    return sentences

def split_content_into_chunks( sentences ):
    """
    Split content into chunks.
    """
    chunk  = ''
    word_count = 0
    chunks = []
    for sentence in sentences:
        current_word_count = len(sentence.split(' '))
        if word_count + current_word_count > 512:
            st.write("Number of words(tokens): {}".format(word_count))
            chunks.append(chunk)
            chunk = ''
            word_count = 0

        word_count += current_word_count
        chunk += sentence + ' '

    st.write("Number of words(tokens): {}".format(word_count))
    chunks.append(chunk)

    return chunks

def main():
    st.title('Racoon Search')
    query = st.text_input('Search query')
    query_params = st.experimental_get_query_params()

    if query :
        with st.spinner('Loading search results...'):
            try:
                results = search_results( query )
            except Exception as exception:
                exception_notice(exception)
                return

        number_of_results = len( results )
        st.success( 'Found {} results for "{}".'.format( number_of_results, query ) )

        if 'debug' in query_params.keys() and query_params['debug'][0] == 'true':
            with st.expander("Search results JSON"):
                if st.button('Delete search result cache', key=query + 'cache'):
                    remove( 'search-results/' + slugify( query ) + '.json' )
                st.json( results )

        progress_bar = st.progress(0)

        st.header('Search results')
        st.markdown('---')

        # for result in results:
        for index, result in enumerate(results):
            with st.container():
                st.markdown('### ' + result['title'])
                url_id = uuid.uuid5( uuid.NAMESPACE_URL, result['link'] ).hex
                try:
                    strings   = get_url_content( result['link'] )
                    keywords  = query.split(' ')
                    sentences = filter_sentences_by_keywords( strings, keywords )
                    chunks    = split_content_into_chunks( sentences )

                    number_of_chunks = len( chunks )
                    if number_of_chunks > 1:
                        max_length = int( 512 / len( chunks ) )
                        st.write("Max length: {}".format(max_length))

                        content = ''
                        for chunk in chunks:
                            chunk_length = len( chunk.split(' ') )
                            chunk_max_length = 200
                            if chunk_length < max_length:
                                chunk_max_length = int( chunk_length / 2 )
                            chunk_summary = generate_summary( chunk, min( max_length, chunk_max_length )  )
                            for summary in chunk_summary:
                                content += summary['summary_text'] + ' '
                    else:
                        content = chunks[0]

                    summary = get_summary( url_id, content )

                except Exception as exception:
                    exception_notice(exception)

                progress_bar.progress( ( index + 1 ) / number_of_results )

                col1, col2, col3 = st.columns(3)
                with col1:
                    st.markdown('[Website Link]({})'.format(result['link']))

                with col2:
                    if st.button('Delete content from cache', key=url_id + 'content'):
                        remove( 'page-content/' + url_id + '.txt' )

                with col3:
                    if st.button('Delete summary from cache', key=url_id + 'summary'):
                        remove( 'summaries/' + url_id + '.json' )

                st.markdown('---')
 

if __name__ == '__main__':
    main()