Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import cv2 # type: ignore | |
| class_names = [ | |
| "person", | |
| "bicycle", | |
| "car", | |
| "motorcycle", | |
| "airplane", | |
| "bus", | |
| "train", | |
| "truck", | |
| "boat", | |
| "traffic light", | |
| "fire hydrant", | |
| "stop sign", | |
| "parking meter", | |
| "bench", | |
| "bird", | |
| "cat", | |
| "dog", | |
| "horse", | |
| "sheep", | |
| "cow", | |
| "elephant", | |
| "bear", | |
| "zebra", | |
| "giraffe", | |
| "backpack", | |
| "umbrella", | |
| "handbag", | |
| "tie", | |
| "suitcase", | |
| "frisbee", | |
| "skis", | |
| "snowboard", | |
| "sports ball", | |
| "kite", | |
| "baseball bat", | |
| "baseball glove", | |
| "skateboard", | |
| "surfboard", | |
| "tennis racket", | |
| "bottle", | |
| "wine glass", | |
| "cup", | |
| "fork", | |
| "knife", | |
| "spoon", | |
| "bowl", | |
| "banana", | |
| "apple", | |
| "sandwich", | |
| "orange", | |
| "broccoli", | |
| "carrot", | |
| "hot dog", | |
| "pizza", | |
| "donut", | |
| "cake", | |
| "chair", | |
| "couch", | |
| "potted plant", | |
| "bed", | |
| "dining table", | |
| "toilet", | |
| "tv", | |
| "laptop", | |
| "mouse", | |
| "remote", | |
| "keyboard", | |
| "cell phone", | |
| "microwave", | |
| "oven", | |
| "toaster", | |
| "sink", | |
| "refrigerator", | |
| "book", | |
| "clock", | |
| "vase", | |
| "scissors", | |
| "teddy bear", | |
| "hair drier", | |
| "toothbrush", | |
| ] | |
| # Create a list of colors for each class where each color is a tuple of 3 integer values | |
| rng = np.random.default_rng(3) | |
| colors = rng.uniform(0, 255, size=(len(class_names), 3)) | |
| def nms(boxes, scores, iou_threshold): | |
| # Sort by score | |
| sorted_indices = np.argsort(scores)[::-1] | |
| keep_boxes = [] | |
| while sorted_indices.size > 0: | |
| # Pick the last box | |
| box_id = sorted_indices[0] | |
| keep_boxes.append(box_id) | |
| # Compute IoU of the picked box with the rest | |
| ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :]) | |
| # Remove boxes with IoU over the threshold | |
| keep_indices = np.where(ious < iou_threshold)[0] | |
| # print(keep_indices.shape, sorted_indices.shape) | |
| sorted_indices = sorted_indices[keep_indices + 1] | |
| return keep_boxes | |
| def multiclass_nms(boxes, scores, class_ids, iou_threshold): | |
| unique_class_ids = np.unique(class_ids) | |
| keep_boxes = [] | |
| for class_id in unique_class_ids: | |
| class_indices = np.where(class_ids == class_id)[0] | |
| class_boxes = boxes[class_indices, :] | |
| class_scores = scores[class_indices] | |
| class_keep_boxes = nms(class_boxes, class_scores, iou_threshold) | |
| keep_boxes.extend(class_indices[class_keep_boxes]) | |
| return keep_boxes | |
| def compute_iou(box, boxes): | |
| # Compute xmin, ymin, xmax, ymax for both boxes | |
| xmin = np.maximum(box[0], boxes[:, 0]) | |
| ymin = np.maximum(box[1], boxes[:, 1]) | |
| xmax = np.minimum(box[2], boxes[:, 2]) | |
| ymax = np.minimum(box[3], boxes[:, 3]) | |
| # Compute intersection area | |
| intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin) | |
| # Compute union area | |
| box_area = (box[2] - box[0]) * (box[3] - box[1]) | |
| boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) | |
| union_area = box_area + boxes_area - intersection_area | |
| # Compute IoU | |
| iou = intersection_area / union_area | |
| return iou | |
| def xywh2xyxy(x): | |
| # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2) | |
| y = np.copy(x) | |
| y[..., 0] = x[..., 0] - x[..., 2] / 2 | |
| y[..., 1] = x[..., 1] - x[..., 3] / 2 | |
| y[..., 2] = x[..., 0] + x[..., 2] / 2 | |
| y[..., 3] = x[..., 1] + x[..., 3] / 2 | |
| return y | |
| def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3): | |
| det_img = image.copy() | |
| img_height, img_width = image.shape[:2] | |
| font_size = min([img_height, img_width]) * 0.0006 | |
| text_thickness = int(min([img_height, img_width]) * 0.001) | |
| # det_img = draw_masks(det_img, boxes, class_ids, mask_alpha) | |
| # Draw bounding boxes and labels of detections | |
| for class_id, box, score in zip(class_ids, boxes, scores): | |
| color = colors[class_id] | |
| draw_box(det_img, box, color) # type: ignore | |
| label = class_names[class_id] | |
| caption = f"{label} {int(score * 100)}%" | |
| draw_text(det_img, caption, box, color, font_size, text_thickness) # type: ignore | |
| return det_img | |
| def draw_box( | |
| image: np.ndarray, | |
| box: np.ndarray, | |
| color: tuple[int, int, int] = (0, 0, 255), | |
| thickness: int = 2, | |
| ) -> np.ndarray: | |
| x1, y1, x2, y2 = box.astype(int) | |
| return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness) | |
| def draw_text( | |
| image: np.ndarray, | |
| text: str, | |
| box: np.ndarray, | |
| color: tuple[int, int, int] = (0, 0, 255), | |
| font_size: float = 0.001, | |
| text_thickness: int = 2, | |
| ) -> np.ndarray: | |
| x1, y1, x2, y2 = box.astype(int) | |
| (tw, th), _ = cv2.getTextSize( | |
| text=text, | |
| fontFace=cv2.FONT_HERSHEY_SIMPLEX, | |
| fontScale=font_size, | |
| thickness=text_thickness, | |
| ) | |
| th = int(th * 1.2) | |
| cv2.rectangle(image, (x1, y1), (x1 + tw, y1 - th), color, -1) | |
| return cv2.putText( | |
| image, | |
| text, | |
| (x1, y1), | |
| cv2.FONT_HERSHEY_SIMPLEX, | |
| font_size, | |
| (255, 255, 255), | |
| text_thickness, | |
| cv2.LINE_AA, | |
| ) | |
| def draw_masks( | |
| image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3 | |
| ) -> np.ndarray: | |
| mask_img = image.copy() | |
| # Draw bounding boxes and labels of detections | |
| for box, class_id in zip(boxes, classes): | |
| color = colors[class_id] | |
| x1, y1, x2, y2 = box.astype(int) | |
| # Draw fill rectangle in mask image | |
| cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1) # type: ignore | |
| return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0) | |