Spaces:
Runtime error
Runtime error
| import time | |
| import cv2 # type: ignore | |
| import numpy as np | |
| import onnxruntime # type: ignore | |
| from utils import draw_detections # type: ignore | |
| class YOLOv10: | |
| def __init__(self, path): | |
| # Initialize model | |
| self.initialize_model(path) | |
| def __call__(self, image): | |
| return self.detect_objects(image) | |
| def initialize_model(self, path): | |
| self.session = onnxruntime.InferenceSession( | |
| path, providers=onnxruntime.get_available_providers() | |
| ) | |
| # Get model info | |
| self.get_input_details() | |
| self.get_output_details() | |
| def detect_objects(self, image, conf_threshold=0.3): | |
| input_tensor = self.prepare_input(image) | |
| # Perform inference on the image | |
| new_image = self.inference(image, input_tensor, conf_threshold) | |
| return new_image | |
| def prepare_input(self, image): | |
| self.img_height, self.img_width = image.shape[:2] | |
| input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # Resize input image | |
| input_img = cv2.resize(input_img, (self.input_width, self.input_height)) | |
| # Scale input pixel values to 0 to 1 | |
| input_img = input_img / 255.0 | |
| input_img = input_img.transpose(2, 0, 1) | |
| input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32) | |
| return input_tensor | |
| def inference(self, image, input_tensor, conf_threshold=0.3): | |
| start = time.perf_counter() | |
| outputs = self.session.run( | |
| self.output_names, {self.input_names[0]: input_tensor} | |
| ) | |
| print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms") | |
| ( | |
| boxes, | |
| scores, | |
| class_ids, | |
| ) = self.process_output(outputs, conf_threshold) | |
| return self.draw_detections(image, boxes, scores, class_ids) | |
| def process_output(self, output, conf_threshold=0.3): | |
| predictions = np.squeeze(output[0]) | |
| # Filter out object confidence scores below threshold | |
| scores = predictions[:, 4] | |
| predictions = predictions[scores > conf_threshold, :] | |
| scores = scores[scores > conf_threshold] | |
| if len(scores) == 0: | |
| return [], [], [] | |
| # Get the class with the highest confidence | |
| class_ids = predictions[:, 5].astype(int) | |
| # Get bounding boxes for each object | |
| boxes = self.extract_boxes(predictions) | |
| return boxes, scores, class_ids | |
| def extract_boxes(self, predictions): | |
| # Extract boxes from predictions | |
| boxes = predictions[:, :4] | |
| # Scale boxes to original image dimensions | |
| boxes = self.rescale_boxes(boxes) | |
| # Convert boxes to xyxy format | |
| # boxes = xywh2xyxy(boxes) | |
| return boxes | |
| def rescale_boxes(self, boxes): | |
| # Rescale boxes to original image dimensions | |
| input_shape = np.array( | |
| [self.input_width, self.input_height, self.input_width, self.input_height] | |
| ) | |
| boxes = np.divide(boxes, input_shape, dtype=np.float32) | |
| boxes *= np.array( | |
| [self.img_width, self.img_height, self.img_width, self.img_height] | |
| ) | |
| return boxes | |
| def draw_detections( | |
| self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4 | |
| ): | |
| return draw_detections(image, boxes, scores, class_ids, mask_alpha) | |
| def get_input_details(self): | |
| model_inputs = self.session.get_inputs() | |
| self.input_names = [model_inputs[i].name for i in range(len(model_inputs))] | |
| self.input_shape = model_inputs[0].shape | |
| self.input_height = self.input_shape[2] | |
| self.input_width = self.input_shape[3] | |
| def get_output_details(self): | |
| model_outputs = self.session.get_outputs() | |
| self.output_names = [model_outputs[i].name for i in range(len(model_outputs))] | |
| if __name__ == "__main__": | |
| import requests | |
| import tempfile | |
| from huggingface_hub import hf_hub_download | |
| model_file = hf_hub_download( | |
| repo_id="onnx-community/yolov10s", filename="onnx/model.onnx" | |
| ) | |
| yolov8_detector = YOLOv10(model_file) | |
| with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f: | |
| f.write( | |
| requests.get( | |
| "https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg" | |
| ).content | |
| ) | |
| f.seek(0) | |
| img = cv2.imread(f.name) | |
| # # Detect Objects | |
| combined_image = yolov8_detector.detect_objects(img) | |
| # Draw detections | |
| cv2.namedWindow("Output", cv2.WINDOW_NORMAL) | |
| cv2.imshow("Output", combined_image) | |
| cv2.waitKey(0) | |