Try-Art-0-8B / app.py
gr0010's picture
Update app.py
0bc74d6 verified
import os
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
# -------------------------------------------------
# Model setup (loaded once at startup)
# -------------------------------------------------
model_name = "gr0010/Art-0-8B-development"
# Load model and tokenizer globally
print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load model in CPU first, will move to GPU when needed
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="cuda", # Direct CUDA loading for ZeroGPU
trust_remote_code=True,
)
print("Model loaded successfully!")
# -------------------------------------------------
# Core generation and parsing logic with Zero GPU
# -------------------------------------------------
@spaces.GPU(duration=120) # Request GPU for up to 120 seconds
def generate_and_parse(messages: list, temperature: float = 0.6,
top_p: float = 0.95, top_k: int = 20,
min_p: float = 0.0, max_new_tokens: int = 32768):
"""
Takes a clean list of messages, generates a response,
and parses it into thinking and answer parts.
Decorated with @spaces.GPU for Zero GPU allocation.
"""
# Apply chat template with enable_thinking=True for Qwen3
prompt_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Explicitly enable thinking mode
)
# --- CONSOLE DEBUG OUTPUT ---
print("\n" + "="*50)
print("--- RAW PROMPT SENT TO MODEL ---")
print(prompt_text[:500] + "..." if len(prompt_text) > 500 else prompt_text)
print("="*50 + "\n")
model_inputs = tokenizer([prompt_text], return_tensors="pt").to("cuda")
with torch.no_grad():
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
min_p=min_p,
pad_token_id=tokenizer.eos_token_id,
)
output_token_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
thinking = ""
answer = ""
try:
# Find the </think> token to separate thinking from answer
end_think_token_id = 151668 # </think>
if end_think_token_id in output_token_ids:
end_think_idx = output_token_ids.index(end_think_token_id) + 1
thinking_tokens = output_token_ids[:end_think_idx]
answer_tokens = output_token_ids[end_think_idx:]
thinking = tokenizer.decode(thinking_tokens, skip_special_tokens=True).strip()
# Remove <think> and </think> tags from thinking
thinking = thinking.replace("<think>", "").replace("</think>", "").strip()
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True).strip()
else:
# If no </think> token found, treat everything as answer
answer = tokenizer.decode(output_token_ids, skip_special_tokens=True).strip()
# Remove any stray <think> tags
answer = answer.replace("<think>", "").replace("</think>", "")
except (ValueError, IndexError):
answer = tokenizer.decode(output_token_ids, skip_special_tokens=True).strip()
answer = answer.replace("<think>", "").replace("</think>", "")
return thinking, answer
# -------------------------------------------------
# Gradio UI Logic
# -------------------------------------------------
# Custom CSS for better styling
custom_css = """
.model-info {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 1rem;
border-radius: 10px;
margin-bottom: 1rem;
color: white;
}
.model-info a {
color: #fff;
text-decoration: underline;
font-weight: bold;
}
"""
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True, css=custom_css) as demo:
# Separate states for display and model context
display_history_state = gr.State([]) # For Gradio chatbot display (with HTML formatting)
model_history_state = gr.State([]) # Clean history for model (plain text only)
is_generating_state = gr.State(False) # To prevent multiple submissions
# Model info and CTA section
gr.HTML("""
<div class="model-info">
<h1 style="margin: 0; font-size: 2em;">🎨 Art-0 8B Thinking Chatbot</h1>
<p style="margin: 0.5rem 0;">
Powered by <a href="https://huggingface.co/gr0010/Art-0-8B-development" target="_blank">Art-0-8B-development</a>
- A fine-tuned Qwen3-8B model with advanced reasoning capabilities
</p>
</div>
""")
gr.Markdown(
"""
Chat with Art-0-8B, featuring transparent reasoning display and custom personality instructions.
The model shows its internal thought process when solving problems.
"""
)
# System prompt at the top (main feature)
with gr.Group():
gr.Markdown("### 🎭 System Prompt (Personality & Behavior)")
system_prompt = gr.Textbox(
value="""Personality Instructions:
You are an AI assistant named Art developed by AGI-0.
Reasoning Instructions:
Think using bullet points and short sentences to simulate thoughts and emoticons to simulate emotions""",
label="System Prompt",
info="Define the model's personality and reasoning style",
lines=5,
interactive=True
)
# Main chat interface
chatbot = gr.Chatbot(
label="Conversation",
elem_id="chatbot",
bubble_full_width=False,
height=500,
show_copy_button=True,
type="messages"
)
with gr.Row():
user_input = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
scale=4,
container=False,
interactive=True
)
submit_btn = gr.Button(
"Send",
variant="primary",
scale=1,
interactive=True
)
with gr.Row():
clear_btn = gr.Button("πŸ—‘οΈ Clear History", variant="secondary")
retry_btn = gr.Button("πŸ”„ Retry Last", variant="secondary")
# Example prompts
gr.Examples(
examples=[
["Give me a short introduction to large language models."],
["What are the benefits of using transformers in AI?"],
["There are 5 birds on a branch. A hunter shoots one. How many birds are left?"],
["Explain quantum computing step by step."],
["Write a Python function to calculate the factorial of a number."],
["What makes Art-0 different from other AI models?"],
],
inputs=user_input,
label="πŸ’‘ Example Prompts"
)
# Advanced settings at the bottom
with gr.Accordion("βš™οΈ Advanced Generation Settings", open=False):
with gr.Row():
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.6,
step=0.1,
label="Temperature",
info="Controls randomness (higher = more creative)"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold"
)
with gr.Row():
top_k = gr.Slider(
minimum=1,
maximum=100,
value=20,
step=1,
label="Top-k",
info="Number of top tokens to consider"
)
min_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.01,
label="Min-p",
info="Minimum probability threshold for token sampling"
)
with gr.Row():
max_new_tokens = gr.Slider(
minimum=128,
maximum=32768,
value=32768,
step=128,
label="Max New Tokens",
info="Maximum response length"
)
def handle_user_message(user_message: str, display_history: list, model_history: list,
system_prompt_text: str, is_generating: bool,
temp: float, top_p_val: float, top_k_val: int,
min_p_val: float, max_tokens: int):
"""
Handles user input, updates histories, and generates the model's response.
"""
# Prevent multiple submissions
if is_generating or not user_message.strip():
return {
chatbot: display_history,
display_history_state: display_history,
model_history_state: model_history,
is_generating_state: is_generating,
user_input: user_message,
submit_btn: gr.update(interactive=not is_generating)
}
# Set generating state
is_generating = True
# Update model history (clean format for model - PLAIN TEXT ONLY)
model_history.append({"role": "user", "content": user_message.strip()})
# Update display history (for Gradio chatbot)
display_history.append({"role": "user", "content": user_message.strip()})
# Yield intermediate state to show user message and disable input
yield {
chatbot: display_history,
display_history_state: display_history,
model_history_state: model_history,
is_generating_state: is_generating,
user_input: "",
submit_btn: gr.update(interactive=False, value="πŸ”„ Generating...")
}
# Prepare messages for model (include system prompt)
messages_for_model = []
if system_prompt_text.strip():
messages_for_model.append({"role": "system", "content": system_prompt_text.strip()})
messages_for_model.extend(model_history)
try:
# Generate response with hyperparameters
thinking, answer = generate_and_parse(
messages_for_model,
temperature=temp,
top_p=top_p_val,
top_k=top_k_val,
min_p=min_p_val,
max_new_tokens=max_tokens
)
# Update model history with CLEAN answer (no HTML formatting)
model_history.append({"role": "assistant", "content": answer})
# Format response for display (with HTML formatting)
if thinking and thinking.strip():
formatted_response = f"""<details>
<summary><b>πŸ€” Show Reasoning Process</b></summary>
{thinking}
</details>
{answer}"""
else:
formatted_response = answer
# Update display history with formatted response
display_history.append({"role": "assistant", "content": formatted_response})
except Exception as e:
error_msg = f"❌ Error generating response: {str(e)}"
display_history.append({"role": "assistant", "content": error_msg})
# Don't add error to model history to avoid confusing the model
# Reset generating state
is_generating = False
# Final yield with complete response
yield {
chatbot: display_history,
display_history_state: display_history,
model_history_state: model_history,
is_generating_state: is_generating,
user_input: "",
submit_btn: gr.update(interactive=True, value="Send")
}
def clear_history():
"""Clear both display and model histories"""
return {
chatbot: [],
display_history_state: [],
model_history_state: [],
is_generating_state: False,
user_input: "",
submit_btn: gr.update(interactive=True, value="Send")
}
def retry_last(display_history: list, model_history: list, system_prompt_text: str,
temp: float, top_p_val: float, top_k_val: int,
min_p_val: float, max_tokens: int):
"""
Retry the last user message with corrected history and generator handling.
"""
# Safety check: ensure there is a history and the last message was from the assistant
if not model_history or model_history[-1]["role"] != "assistant":
# If nothing to retry, yield the current state and stop
yield {
chatbot: display_history,
display_history_state: display_history,
model_history_state: model_history,
is_generating_state: False
}
return
# Remove the last assistant message from both histories
model_history.pop() # Remove assistant's clean message from model history
display_history.pop() # Remove assistant's formatted message from display history
# Get the last user message to resubmit it, then remove it from both histories
if model_history and model_history[-1]["role"] == "user":
last_user_msg = model_history[-1]["content"]
model_history.pop() # Remove user message from model history
display_history.pop() # Remove user message from display history
else:
# If no user message found, just return current state
yield {
chatbot: display_history,
display_history_state: display_history,
model_history_state: model_history,
is_generating_state: False
}
return
# Use 'yield from' to properly call the generator and pass its updates
yield from handle_user_message(
last_user_msg, display_history, model_history,
system_prompt_text, False, temp, top_p_val, top_k_val, min_p_val, max_tokens
)
def on_input_change(text, is_generating):
"""Handle input text changes"""
return gr.update(interactive=not is_generating and bool(text.strip()))
# Event listeners
submit_event = submit_btn.click(
handle_user_message,
inputs=[user_input, display_history_state, model_history_state, system_prompt,
is_generating_state, temperature, top_p, top_k, min_p, max_new_tokens],
outputs=[chatbot, display_history_state, model_history_state, is_generating_state,
user_input, submit_btn],
show_progress=True
)
submit_event_enter = user_input.submit(
handle_user_message,
inputs=[user_input, display_history_state, model_history_state, system_prompt,
is_generating_state, temperature, top_p, top_k, min_p, max_new_tokens],
outputs=[chatbot, display_history_state, model_history_state, is_generating_state,
user_input, submit_btn],
show_progress=True
)
# Clear button event
clear_btn.click(
clear_history,
outputs=[chatbot, display_history_state, model_history_state, is_generating_state,
user_input, submit_btn]
)
# Retry button event - FIXED OUTPUTS
retry_btn.click(
retry_last,
inputs=[display_history_state, model_history_state, system_prompt,
temperature, top_p, top_k, min_p, max_new_tokens],
outputs=[chatbot, display_history_state, model_history_state, is_generating_state],
show_progress=True
)
# Update submit button based on input and generation state
user_input.change(
on_input_change,
inputs=[user_input, is_generating_state],
outputs=[submit_btn]
)
if __name__ == "__main__":
demo.launch(debug=True, share=False)