Spaces:
Running
on
Zero
Running
on
Zero
gaparmar
commited on
Commit
·
1930c69
1
Parent(s):
fcb37cd
initial
Browse files- .gitignore +211 -0
- app.py +294 -0
- my_utils/default_values.py +81 -0
- my_utils/group_inference.py +257 -0
- my_utils/scores.py +221 -0
- my_utils/solvers.py +33 -0
- requirements.txt +14 -0
- styles.css +160 -0
.gitignore
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
outputs
|
2 |
+
.gradio
|
3 |
+
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[codz]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py.cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# UV
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
#uv.lock
|
106 |
+
|
107 |
+
# poetry
|
108 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
109 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
110 |
+
# commonly ignored for libraries.
|
111 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
112 |
+
#poetry.lock
|
113 |
+
#poetry.toml
|
114 |
+
|
115 |
+
# pdm
|
116 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
117 |
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
118 |
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
119 |
+
#pdm.lock
|
120 |
+
#pdm.toml
|
121 |
+
.pdm-python
|
122 |
+
.pdm-build/
|
123 |
+
|
124 |
+
# pixi
|
125 |
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
126 |
+
#pixi.lock
|
127 |
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
128 |
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
129 |
+
.pixi
|
130 |
+
|
131 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
132 |
+
__pypackages__/
|
133 |
+
|
134 |
+
# Celery stuff
|
135 |
+
celerybeat-schedule
|
136 |
+
celerybeat.pid
|
137 |
+
|
138 |
+
# SageMath parsed files
|
139 |
+
*.sage.py
|
140 |
+
|
141 |
+
# Environments
|
142 |
+
.env
|
143 |
+
.envrc
|
144 |
+
.venv
|
145 |
+
env/
|
146 |
+
venv/
|
147 |
+
ENV/
|
148 |
+
env.bak/
|
149 |
+
venv.bak/
|
150 |
+
|
151 |
+
# Spyder project settings
|
152 |
+
.spyderproject
|
153 |
+
.spyproject
|
154 |
+
|
155 |
+
# Rope project settings
|
156 |
+
.ropeproject
|
157 |
+
|
158 |
+
# mkdocs documentation
|
159 |
+
/site
|
160 |
+
|
161 |
+
# mypy
|
162 |
+
.mypy_cache/
|
163 |
+
.dmypy.json
|
164 |
+
dmypy.json
|
165 |
+
|
166 |
+
# Pyre type checker
|
167 |
+
.pyre/
|
168 |
+
|
169 |
+
# pytype static type analyzer
|
170 |
+
.pytype/
|
171 |
+
|
172 |
+
# Cython debug symbols
|
173 |
+
cython_debug/
|
174 |
+
|
175 |
+
# PyCharm
|
176 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
177 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
178 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
179 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
180 |
+
#.idea/
|
181 |
+
|
182 |
+
# Abstra
|
183 |
+
# Abstra is an AI-powered process automation framework.
|
184 |
+
# Ignore directories containing user credentials, local state, and settings.
|
185 |
+
# Learn more at https://abstra.io/docs
|
186 |
+
.abstra/
|
187 |
+
|
188 |
+
# Visual Studio Code
|
189 |
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
190 |
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
191 |
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
192 |
+
# you could uncomment the following to ignore the entire vscode folder
|
193 |
+
# .vscode/
|
194 |
+
|
195 |
+
# Ruff stuff:
|
196 |
+
.ruff_cache/
|
197 |
+
|
198 |
+
# PyPI configuration file
|
199 |
+
.pypirc
|
200 |
+
|
201 |
+
# Cursor
|
202 |
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
203 |
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
204 |
+
# refer to https://docs.cursor.com/context/ignore-files
|
205 |
+
.cursorignore
|
206 |
+
.cursorindexingignore
|
207 |
+
|
208 |
+
# Marimo
|
209 |
+
marimo/_static/
|
210 |
+
marimo/_lsp/
|
211 |
+
__marimo__/
|
app.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import spaces
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import functools
|
6 |
+
import numpy as np
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from diffusers import FluxPipeline, AutoencoderTiny
|
9 |
+
from transformers import CLIPProcessor, CLIPModel, AutoModel
|
10 |
+
from transformers.models.clip.modeling_clip import _get_vector_norm
|
11 |
+
from my_utils.group_inference import run_group_inference
|
12 |
+
from my_utils.default_values import apply_defaults
|
13 |
+
import argparse
|
14 |
+
|
15 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell").to("cuda")
|
16 |
+
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1").to("cuda")
|
17 |
+
|
18 |
+
m_clip = CLIPModel.from_pretrained("multimodalart/clip-vit-base-patch32").to("cuda")
|
19 |
+
prep_clip = CLIPProcessor.from_pretrained("multimodalart/clip-vit-base-patch32")
|
20 |
+
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to("cuda")
|
21 |
+
|
22 |
+
# Get default args for flux-schnell
|
23 |
+
default_args = argparse.Namespace(
|
24 |
+
model_name="flux-schnell",
|
25 |
+
prompt=None,
|
26 |
+
starting_candidates=None,
|
27 |
+
output_group_size=None,
|
28 |
+
pruning_ratio=None,
|
29 |
+
lambda_score=None,
|
30 |
+
seed=None,
|
31 |
+
unary_term="clip_text_img",
|
32 |
+
binary_term="diversity_dino",
|
33 |
+
guidance_scale=None,
|
34 |
+
num_inference_steps=None,
|
35 |
+
height=None,
|
36 |
+
width=None,
|
37 |
+
)
|
38 |
+
default_args = apply_defaults(default_args)
|
39 |
+
|
40 |
+
|
41 |
+
# Scoring functions
|
42 |
+
@torch.no_grad()
|
43 |
+
def unary_clip_text_img_score(l_images, target_caption, device="cuda"):
|
44 |
+
"""Compute CLIP text-image similarity scores."""
|
45 |
+
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
|
46 |
+
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
|
47 |
+
|
48 |
+
b_images = torch.cat(l_images, dim=0)
|
49 |
+
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
|
50 |
+
b_images = b_images * 0.5 + 0.5
|
51 |
+
b_images = (b_images - _img_mean) / _img_std
|
52 |
+
|
53 |
+
text_encoding = prep_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
|
54 |
+
output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image / m_clip.logit_scale.exp()
|
55 |
+
return output.view(-1).cpu().numpy()
|
56 |
+
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def binary_dino_diversity_score(l_images, device="cuda"):
|
60 |
+
"""Compute pairwise diversity scores using DINO."""
|
61 |
+
b_images = torch.cat(l_images, dim=0)
|
62 |
+
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
63 |
+
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
64 |
+
|
65 |
+
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
|
66 |
+
b_images = b_images * 0.5 + 0.5
|
67 |
+
b_images = (b_images - _img_mean) / _img_std
|
68 |
+
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu()
|
69 |
+
|
70 |
+
N = len(l_images)
|
71 |
+
score_matrix = np.zeros((N, N))
|
72 |
+
for i in range(N):
|
73 |
+
f1 = all_features[i]
|
74 |
+
for j in range(i+1, N):
|
75 |
+
f2 = all_features[j]
|
76 |
+
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
|
77 |
+
score_matrix[i, j] = cos_sim
|
78 |
+
return score_matrix
|
79 |
+
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def binary_dino_cls_score(l_images, device="cuda"):
|
83 |
+
"""Compute pairwise diversity scores using DINO CLS tokens."""
|
84 |
+
b_images = torch.cat(l_images, dim=0)
|
85 |
+
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
86 |
+
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
87 |
+
|
88 |
+
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
|
89 |
+
b_images = b_images * 0.5 + 0.5
|
90 |
+
b_images = (b_images - _img_mean) / _img_std
|
91 |
+
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu()
|
92 |
+
|
93 |
+
N = len(l_images)
|
94 |
+
score_matrix = np.zeros((N, N))
|
95 |
+
for i in range(N):
|
96 |
+
f1 = all_features[i]
|
97 |
+
for j in range(i+1, N):
|
98 |
+
f2 = all_features[j]
|
99 |
+
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
|
100 |
+
score_matrix[i, j] = cos_sim
|
101 |
+
return score_matrix
|
102 |
+
|
103 |
+
|
104 |
+
@torch.no_grad()
|
105 |
+
def binary_clip_diversity_score(l_images, device="cuda"):
|
106 |
+
"""Compute pairwise diversity scores using CLIP."""
|
107 |
+
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
|
108 |
+
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
|
109 |
+
|
110 |
+
b_images = torch.cat(l_images, dim=0)
|
111 |
+
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
|
112 |
+
b_images = b_images * 0.5 + 0.5
|
113 |
+
b_images = (b_images - _img_mean) / _img_std
|
114 |
+
|
115 |
+
vision_outputs = m_clip.vision_model(
|
116 |
+
pixel_values=b_images,
|
117 |
+
output_attentions=False,
|
118 |
+
output_hidden_states=False,
|
119 |
+
interpolate_pos_encoding=False,
|
120 |
+
return_dict=True
|
121 |
+
)
|
122 |
+
image_embeds = m_clip.visual_projection(vision_outputs[1])
|
123 |
+
image_embeds = image_embeds / _get_vector_norm(image_embeds)
|
124 |
+
|
125 |
+
N = len(l_images)
|
126 |
+
score_matrix = np.zeros((N, N))
|
127 |
+
for i in range(N):
|
128 |
+
f1 = image_embeds[i]
|
129 |
+
for j in range(i+1, N):
|
130 |
+
f2 = image_embeds[j]
|
131 |
+
cos_sim = (1 - torch.dot(f1, f2)).item()
|
132 |
+
score_matrix[i, j] = cos_sim
|
133 |
+
return score_matrix
|
134 |
+
|
135 |
+
|
136 |
+
def get_score_functions(unary_term, binary_term, prompt):
|
137 |
+
"""Get the appropriate scoring functions based on selected terms."""
|
138 |
+
# Unary score function (always CLIP for flux-schnell) - bind the prompt
|
139 |
+
unary_score_fn = functools.partial(unary_clip_text_img_score, target_caption=prompt, device="cuda")
|
140 |
+
# Binary score function
|
141 |
+
if binary_term == "diversity_dino":
|
142 |
+
binary_score_fn = functools.partial(binary_dino_diversity_score, device="cuda")
|
143 |
+
elif binary_term == "dino_cls_pairwise":
|
144 |
+
binary_score_fn = functools.partial(binary_dino_cls_score, device="cuda")
|
145 |
+
elif binary_term == "diversity_clip":
|
146 |
+
binary_score_fn = functools.partial(binary_clip_diversity_score, device="cuda")
|
147 |
+
else:
|
148 |
+
raise ValueError(f"Invalid binary term: {binary_term}")
|
149 |
+
|
150 |
+
return unary_score_fn, binary_score_fn
|
151 |
+
|
152 |
+
|
153 |
+
@spaces.GPU(duration=300)
|
154 |
+
def generate_images(prompt, starting_candidates, output_group_size, pruning_ratio,
|
155 |
+
lambda_score, seed, unary_term, binary_term, progress=gr.Progress(track_tqdm=True)):
|
156 |
+
"""Generate images using group inference with progressive pruning."""
|
157 |
+
|
158 |
+
# Get scoring functions with prompt bound to unary function
|
159 |
+
unary_score_fn, binary_score_fn = get_score_functions(unary_term, binary_term, prompt)
|
160 |
+
|
161 |
+
# Create inference args
|
162 |
+
inference_args = {
|
163 |
+
"model_name": "flux-schnell",
|
164 |
+
"prompt": prompt,
|
165 |
+
"guidance_scale": default_args.guidance_scale,
|
166 |
+
"num_inference_steps": default_args.num_inference_steps,
|
167 |
+
"max_sequence_length": 256,
|
168 |
+
"height": default_args.height,
|
169 |
+
"width": default_args.width,
|
170 |
+
"unary_score_fn": unary_score_fn,
|
171 |
+
"binary_score_fn": binary_score_fn,
|
172 |
+
"output_group_size": output_group_size,
|
173 |
+
"pruning_ratio": pruning_ratio,
|
174 |
+
"lambda_score": lambda_score,
|
175 |
+
"l_generator": [torch.Generator("cpu").manual_seed(seed + i) for i in range(starting_candidates)],
|
176 |
+
"starting_candidates": starting_candidates,
|
177 |
+
"skip_first_cfg": True,
|
178 |
+
}
|
179 |
+
print(f"pruning ratio is: {pruning_ratio}")
|
180 |
+
# Run group inference
|
181 |
+
output_group = run_group_inference(pipe, **inference_args)
|
182 |
+
return output_group
|
183 |
+
|
184 |
+
|
185 |
+
# Load custom CSS
|
186 |
+
css_path = os.path.join(os.path.dirname(__file__), "styles.css")
|
187 |
+
with open(css_path, "r") as f:
|
188 |
+
custom_css = f.read()
|
189 |
+
|
190 |
+
# JavaScript to force light mode
|
191 |
+
js_func = """
|
192 |
+
function refresh() {
|
193 |
+
const url = new URL(window.location);
|
194 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
195 |
+
url.searchParams.set('__theme', 'light');
|
196 |
+
window.location.href = url.href;
|
197 |
+
}
|
198 |
+
}
|
199 |
+
"""
|
200 |
+
|
201 |
+
# Create Gradio interface
|
202 |
+
with gr.Blocks(css=custom_css, js=js_func, theme=gr.themes.Soft(), elem_id="main-container") as demo:
|
203 |
+
|
204 |
+
# Title and header
|
205 |
+
gr.HTML(
|
206 |
+
"""
|
207 |
+
<div class="title_left">
|
208 |
+
<h1>Scaling Group Inference for Diverse and High-Quality Generation</h1>
|
209 |
+
<div class="author-container">
|
210 |
+
<div class="grid-item cmu"><a href="https://gauravparmar.com/">Gaurav Parmar</a></div>
|
211 |
+
<div class="grid-item snap"><a href="https://orpatashnik.github.io/">Or Patashnik</a></div>
|
212 |
+
<div class="grid-item snap"><a href="https://scholar.google.com/citations?user=uD79u6oAAAAJ&hl=en">Daniil Ostashev</a></div>
|
213 |
+
<div class="grid-item snap"><a href="https://wangkua1.github.io/">Kuan-Chieh (Jackson) Wang</a></div>
|
214 |
+
<div class="grid-item snap"><a href="https://kfiraberman.github.io/">Kfir Aberman</a></div>
|
215 |
+
</div>
|
216 |
+
<div class="author-container">
|
217 |
+
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~srinivas/">Srinivasa Narasimhan</a></div>
|
218 |
+
<div class="grid-item cmu"><a href="https://www.cs.cmu.edu/~junyanz/">Jun-Yan Zhu</a></div>
|
219 |
+
</div>
|
220 |
+
<br>
|
221 |
+
<div class="affiliation-container">
|
222 |
+
<div class="grid-item cmu"> <p>Carnegie Mellon University</p></div>
|
223 |
+
<div class="grid-item snap"> <p>Snap Research</p></div>
|
224 |
+
</div>
|
225 |
+
|
226 |
+
<br>
|
227 |
+
<h2>DEMO: Text-to-Image Group Inference with FLUX.1-Schnell</h2>
|
228 |
+
</div>
|
229 |
+
"""
|
230 |
+
)
|
231 |
+
|
232 |
+
with gr.Row(scale=1):
|
233 |
+
with gr.Column(scale=1.0):
|
234 |
+
prompt = gr.Textbox(label="Prompt", placeholder="A photo of a dog", lines=4, value="A photo of a dog")
|
235 |
+
|
236 |
+
with gr.Column(scale=1.0):
|
237 |
+
with gr.Row(elem_id="starting-candidates-row"):
|
238 |
+
gr.Text("Starting Candidates:", container=False, interactive=False, scale=5)
|
239 |
+
starting_candidates = gr.Number(value=default_args.starting_candidates, precision=0, container=False, show_label=False, scale=1)
|
240 |
+
|
241 |
+
with gr.Row(elem_id="output-group-size-row"):
|
242 |
+
gr.Text("Output Group Size:", container=False, interactive=False, scale=5)
|
243 |
+
output_group_size = gr.Number(value=default_args.output_group_size, precision=0, container=False, show_label=False, scale=1)
|
244 |
+
|
245 |
+
with gr.Column(scale=1.0):
|
246 |
+
with gr.Accordion("Advanced Options", open=False, elem_id="advanced-options-accordion"):
|
247 |
+
with gr.Row():
|
248 |
+
gr.Text("Pruning Ratio:", container=False, interactive=False, elem_id="pruning-ratio-label", scale=3)
|
249 |
+
pruning_ratio = gr.Number(value=default_args.pruning_ratio, precision=2, container=False, show_label=False, scale=1)
|
250 |
+
|
251 |
+
with gr.Row():
|
252 |
+
gr.Text("Lambda:", container=False, interactive=False, elem_id="lambda-label", scale=5)
|
253 |
+
lambda_score = gr.Number(value=default_args.lambda_score, precision=1, container=False, show_label=False, scale=1)
|
254 |
+
|
255 |
+
with gr.Row():
|
256 |
+
gr.Text("Seed:", container=False, interactive=False, elem_id="seed-label", scale=5)
|
257 |
+
seed = gr.Number(value=42, precision=0, container=False, show_label=False, scale=1)
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
gr.Text("Unary:", container=False, interactive=False, elem_id="unary-term-label", scale=2)
|
261 |
+
unary_term = gr.Dropdown(choices=["clip_text_img"], value=default_args.unary_term, container=False, show_label=False, scale=3)
|
262 |
+
|
263 |
+
with gr.Row():
|
264 |
+
gr.Text("Binary:", container=False, interactive=False, elem_id="binary-term-label", scale=2)
|
265 |
+
binary_term = gr.Dropdown(choices=["diversity_dino", "diversity_clip", "dino_cls_pairwise"], value=default_args.binary_term,
|
266 |
+
container=False, show_label=False, scale=3)
|
267 |
+
|
268 |
+
with gr.Row(scale=1):
|
269 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
270 |
+
|
271 |
+
with gr.Row(scale=1):
|
272 |
+
output_gallery_group = gr.Gallery(label="Group Inference", show_label=True,elem_id="gallery", columns=4, height="auto")
|
273 |
+
|
274 |
+
gr.Examples(
|
275 |
+
examples=[
|
276 |
+
["A photo of a dog", 64, 4, 0.5, 1.0, 42, "clip_text_img", "diversity_dino"],
|
277 |
+
["A mountain landscape", 64, 4, 0.5, 1.0, 123, "clip_text_img", "diversity_dino"],
|
278 |
+
["A cat sleeping", 64, 4, 0.5, 1.0, 456, "clip_text_img", "diversity_dino"],
|
279 |
+
["A sunset at the beach", 64, 4, 0.5, 1.0, 789, "clip_text_img", "diversity_dino"],
|
280 |
+
],
|
281 |
+
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term],
|
282 |
+
outputs=[output_gallery_group],
|
283 |
+
fn=generate_images,
|
284 |
+
cache_examples="lazy",
|
285 |
+
label="Examples"
|
286 |
+
)
|
287 |
+
|
288 |
+
generate_btn.click(
|
289 |
+
fn=generate_images,
|
290 |
+
inputs=[prompt, starting_candidates, output_group_size, pruning_ratio, lambda_score, seed, unary_term, binary_term],
|
291 |
+
outputs=[output_gallery_group]
|
292 |
+
)
|
293 |
+
|
294 |
+
demo.launch()
|
my_utils/default_values.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DEFAULT_VALUES = {
|
2 |
+
"flux-schnell": {
|
3 |
+
"num_inference_steps": 4,
|
4 |
+
"guidance_scale": 0.0,
|
5 |
+
"starting_candidates": 32,
|
6 |
+
"output_group_size": 4,
|
7 |
+
"pruning_ratio": 0.9,
|
8 |
+
"lambda_score": 1.5,
|
9 |
+
"output_dir": "outputs/flux-schnell",
|
10 |
+
"height": 768,
|
11 |
+
"width": 768,
|
12 |
+
"unary_term": "clip_text_img",
|
13 |
+
"binary_term": "diversity_dino"
|
14 |
+
},
|
15 |
+
"flux-dev": {
|
16 |
+
"num_inference_steps": 20,
|
17 |
+
"guidance_scale": 3.5,
|
18 |
+
"starting_candidates": 128,
|
19 |
+
"output_group_size": 4,
|
20 |
+
"pruning_ratio": 0.5,
|
21 |
+
"lambda_score": 1.5,
|
22 |
+
"output_dir": "outputs/flux-dev",
|
23 |
+
"height": 768,
|
24 |
+
"width": 768,
|
25 |
+
"unary_term": "clip_text_img",
|
26 |
+
"binary_term": "diversity_dino"
|
27 |
+
},
|
28 |
+
"flux-depth": {
|
29 |
+
"num_inference_steps": 20,
|
30 |
+
"guidance_scale": 3.5,
|
31 |
+
"starting_candidates": 128,
|
32 |
+
"output_group_size": 4,
|
33 |
+
"pruning_ratio": 0.5,
|
34 |
+
"lambda_score": 1.5,
|
35 |
+
"output_dir": "outputs/flux-depth",
|
36 |
+
"height": 768,
|
37 |
+
"width": 768,
|
38 |
+
"unary_term": "clip_text_img",
|
39 |
+
"binary_term": "diversity_dino"
|
40 |
+
},
|
41 |
+
"flux-canny": {
|
42 |
+
"num_inference_steps": 20,
|
43 |
+
"guidance_scale": 3.5,
|
44 |
+
"starting_candidates": 128,
|
45 |
+
"output_group_size": 4,
|
46 |
+
"pruning_ratio": 0.5,
|
47 |
+
"lambda_score": 1.5,
|
48 |
+
"output_dir": "outputs/flux-canny",
|
49 |
+
"height": 768,
|
50 |
+
"width": 768,
|
51 |
+
"unary_term": "clip_text_img",
|
52 |
+
"binary_term": "diversity_dino"
|
53 |
+
},
|
54 |
+
"flux-kontext": {
|
55 |
+
"num_inference_steps": 28,
|
56 |
+
"guidance_scale": 3.5,
|
57 |
+
"starting_candidates": 128,
|
58 |
+
"output_group_size": 4,
|
59 |
+
"pruning_ratio": 0.5,
|
60 |
+
"lambda_score": 1.0,
|
61 |
+
"output_dir": "outputs/flux-kontext",
|
62 |
+
"height": 1024,
|
63 |
+
"width": 1024,
|
64 |
+
"unary_term": "clip_text_img",
|
65 |
+
"binary_term": "diversity_dino"
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
def apply_defaults(args):
|
70 |
+
model_name = args.model_name
|
71 |
+
|
72 |
+
if model_name not in DEFAULT_VALUES:
|
73 |
+
raise ValueError(f"Unknown model name: {model_name}. Available models: {list(DEFAULT_VALUES.keys())}")
|
74 |
+
|
75 |
+
defaults = DEFAULT_VALUES[model_name]
|
76 |
+
|
77 |
+
for param_name, default_value in defaults.items():
|
78 |
+
if hasattr(args, param_name) and getattr(args, param_name) is None:
|
79 |
+
setattr(args, param_name, default_value)
|
80 |
+
|
81 |
+
return args
|
my_utils/group_inference.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import spaces
|
5 |
+
import numpy as np
|
6 |
+
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
7 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
8 |
+
|
9 |
+
from my_utils.solvers import gurobi_solver
|
10 |
+
|
11 |
+
|
12 |
+
def get_next_size(curr_size, final_size, keep_ratio):
|
13 |
+
"""Calculate next size for progressive pruning during denoising.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
curr_size: Current number of candidates
|
17 |
+
final_size: Target final size
|
18 |
+
keep_ratio: Fraction of candidates to keep at each step
|
19 |
+
"""
|
20 |
+
if curr_size < final_size:
|
21 |
+
raise ValueError("Current size is less than the final size!")
|
22 |
+
elif curr_size == final_size:
|
23 |
+
return curr_size
|
24 |
+
else:
|
25 |
+
next_size = math.ceil(curr_size * keep_ratio)
|
26 |
+
return max(next_size, final_size)
|
27 |
+
|
28 |
+
|
29 |
+
@torch.no_grad()
|
30 |
+
def decode_latent(z, pipe, height, width):
|
31 |
+
"""Decode latent tensor to image using VAE decoder.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
z: Latent tensor to decode
|
35 |
+
pipe: Diffusion pipeline with VAE
|
36 |
+
height: Image height
|
37 |
+
width: Image width
|
38 |
+
"""
|
39 |
+
z = pipe._unpack_latents(z, height, width, pipe.vae_scale_factor)
|
40 |
+
z = (z / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
|
41 |
+
z = pipe.vae.decode(z, return_dict=False)[0].clamp(-1,1)
|
42 |
+
return z
|
43 |
+
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
@spaces.GPU(duration=300)
|
47 |
+
def run_group_inference(pipe, model_name=None, prompt=None, prompt_2=None, negative_prompt=None, negative_prompt_2=None,
|
48 |
+
true_cfg_scale=1.0, height=None, width=None, num_inference_steps=28, sigmas=None, guidance_scale=3.5,
|
49 |
+
l_generator=None, max_sequence_length=512,
|
50 |
+
# group inference arguments
|
51 |
+
unary_score_fn=None, binary_score_fn=None,
|
52 |
+
starting_candidates=None, output_group_size=None, pruning_ratio=None, lambda_score=None,
|
53 |
+
# control arguments
|
54 |
+
control_image=None,
|
55 |
+
# input image for flux-kontext
|
56 |
+
input_image=None,
|
57 |
+
skip_first_cfg=True
|
58 |
+
):
|
59 |
+
"""Run group inference with progressive pruning for diverse, high-quality image generation.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
pipe: Diffusion pipeline
|
63 |
+
model_name: Model type (flux-schnell, flux-dev, flux-depth, flux-canny, flux-kontext)
|
64 |
+
prompt: Text prompt for generation
|
65 |
+
unary_score_fn: Function to compute image quality scores
|
66 |
+
binary_score_fn: Function to compute pairwise diversity scores
|
67 |
+
starting_candidates: Initial number of noise samples
|
68 |
+
output_group_size: Final number of images to generate
|
69 |
+
pruning_ratio: Fraction to prune at each denoising step
|
70 |
+
lambda_score: Weight between quality and diversity terms
|
71 |
+
control_image: Control image for depth/canny models
|
72 |
+
input_image: Input image for flux-kontext editing
|
73 |
+
"""
|
74 |
+
if l_generator is None:
|
75 |
+
l_generator = [torch.Generator("cpu").manual_seed(42+_seed) for _seed in range(starting_candidates)]
|
76 |
+
|
77 |
+
# use the default height and width if not provided
|
78 |
+
height = height or pipe.default_sample_size * pipe.vae_scale_factor
|
79 |
+
width = width or pipe.default_sample_size * pipe.vae_scale_factor
|
80 |
+
|
81 |
+
pipe._guidance_scale = guidance_scale
|
82 |
+
pipe._current_timestep = None
|
83 |
+
pipe._interrupt = False
|
84 |
+
pipe._joint_attention_kwargs = {}
|
85 |
+
|
86 |
+
device = pipe._execution_device
|
87 |
+
|
88 |
+
lora_scale = None
|
89 |
+
has_neg_prompt = negative_prompt is not None
|
90 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
91 |
+
|
92 |
+
# 3. Encode prompts
|
93 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(prompt=prompt, prompt_2=prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale)
|
94 |
+
|
95 |
+
if do_true_cfg:
|
96 |
+
negative_prompt_embeds, negative_pooled_prompt_embeds, _ = pipe.encode_prompt(prompt=negative_prompt, prompt_2=negative_prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, device=device, max_sequence_length=max_sequence_length, lora_scale=lora_scale)
|
97 |
+
|
98 |
+
# 4. Prepare latent variables
|
99 |
+
if model_name in ["flux-depth", "flux-canny"]:
|
100 |
+
# for control models, the pipe.transformer.config.in_channels is doubled
|
101 |
+
num_channels_latents = pipe.transformer.config.in_channels // 8
|
102 |
+
else:
|
103 |
+
num_channels_latents = pipe.transformer.config.in_channels // 4
|
104 |
+
|
105 |
+
# Handle different model types
|
106 |
+
image_latents = None
|
107 |
+
image_ids = None
|
108 |
+
if model_name == "flux-kontext":
|
109 |
+
processed_image = pipe.image_processor.preprocess(input_image, height=height, width=width)
|
110 |
+
l_latents = []
|
111 |
+
for _gen in l_generator:
|
112 |
+
latents, img_latents, latent_ids, img_ids = pipe.prepare_latents(
|
113 |
+
processed_image, 1, num_channels_latents, height, width,
|
114 |
+
prompt_embeds.dtype, device, _gen
|
115 |
+
)
|
116 |
+
l_latents.append(latents)
|
117 |
+
# Use the image_latents and image_ids from the first generator
|
118 |
+
_, image_latents, latent_image_ids, image_ids = pipe.prepare_latents(
|
119 |
+
processed_image, 1, num_channels_latents, height, width,
|
120 |
+
prompt_embeds.dtype, device, l_generator[0]
|
121 |
+
)
|
122 |
+
# Combine latent_ids with image_ids
|
123 |
+
if image_ids is not None:
|
124 |
+
latent_image_ids = torch.cat([latent_image_ids, image_ids], dim=0)
|
125 |
+
else:
|
126 |
+
# For other models (flux-schnell, flux-dev, flux-depth, flux-canny)
|
127 |
+
l_latents = [pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, _gen)[0] for _gen in l_generator]
|
128 |
+
_, latent_image_ids = pipe.prepare_latents(1, num_channels_latents, height, width, prompt_embeds.dtype, device, l_generator[0])
|
129 |
+
|
130 |
+
# 4.5. Prepare control image if provided
|
131 |
+
control_latents = None
|
132 |
+
if model_name in ["flux-depth", "flux-canny"]:
|
133 |
+
control_image_processed = pipe.prepare_image(image=control_image, width=width, height=height, batch_size=1, num_images_per_prompt=1, device=device, dtype=pipe.vae.dtype,)
|
134 |
+
if control_image_processed.ndim == 4:
|
135 |
+
control_latents = pipe.vae.encode(control_image_processed).latents
|
136 |
+
control_latents = (control_latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
|
137 |
+
height_control_image, width_control_image = control_latents.shape[2:]
|
138 |
+
control_latents = pipe._pack_latents(control_latents, 1, num_channels_latents, height_control_image, width_control_image)
|
139 |
+
|
140 |
+
# 5. Prepare timesteps
|
141 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
142 |
+
image_seq_len = latent_image_ids.shape[0]
|
143 |
+
mu = calculate_shift(image_seq_len, pipe.scheduler.config.get("base_image_seq_len", 256), pipe.scheduler.config.get("max_image_seq_len", 4096), pipe.scheduler.config.get("base_shift", 0.5), pipe.scheduler.config.get("max_shift", 1.15))
|
144 |
+
timesteps, num_inference_steps = retrieve_timesteps(pipe.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu)
|
145 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0)
|
146 |
+
pipe._num_timesteps = len(timesteps)
|
147 |
+
_dtype = l_latents[0].dtype
|
148 |
+
|
149 |
+
# handle guidance
|
150 |
+
if pipe.transformer.config.guidance_embeds:
|
151 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(1)
|
152 |
+
else:
|
153 |
+
guidance = None
|
154 |
+
guidance_1 = torch.full([1], 1.0, device=device, dtype=torch.float32).expand(1)
|
155 |
+
|
156 |
+
# 6. Denoising loop
|
157 |
+
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
|
158 |
+
for i, t in enumerate(timesteps):
|
159 |
+
if pipe.interrupt:
|
160 |
+
continue
|
161 |
+
if guidance is not None and skip_first_cfg and i == 0:
|
162 |
+
curr_guidance = guidance_1
|
163 |
+
else:
|
164 |
+
curr_guidance = guidance
|
165 |
+
|
166 |
+
pipe._current_timestep = t
|
167 |
+
timestep = t.expand(1).to(_dtype)
|
168 |
+
# ipdb.set_trace()
|
169 |
+
next_latents = []
|
170 |
+
x0_preds = []
|
171 |
+
# do 1 denoising step
|
172 |
+
for _latent in l_latents:
|
173 |
+
# prepare input for transformer based on model type
|
174 |
+
if model_name in ["flux-depth", "flux-canny"]:
|
175 |
+
# Control models: concatenate control latents along dim=2
|
176 |
+
latent_model_input = torch.cat([_latent, control_latents], dim=2)
|
177 |
+
elif model_name == "flux-kontext":
|
178 |
+
# Kontext model: concatenate image latents along dim=1
|
179 |
+
latent_model_input = torch.cat([_latent, image_latents], dim=1)
|
180 |
+
else:
|
181 |
+
# Standard models (flux-schnell, flux-dev): use latents as is
|
182 |
+
latent_model_input = _latent
|
183 |
+
|
184 |
+
noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0]
|
185 |
+
|
186 |
+
# For flux-kontext, we need to slice the noise_pred to match the latents size
|
187 |
+
if model_name == "flux-kontext":
|
188 |
+
noise_pred = noise_pred[:, : _latent.size(1)]
|
189 |
+
|
190 |
+
if do_true_cfg:
|
191 |
+
neg_noise_pred = pipe.transformer(hidden_states=latent_model_input, timestep=timestep / 1000, guidance=curr_guidance, pooled_projections=negative_pooled_prompt_embeds, encoder_hidden_states=negative_prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False)[0]
|
192 |
+
if model_name == "flux-kontext":
|
193 |
+
neg_noise_pred = neg_noise_pred[:, : _latent.size(1)]
|
194 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
195 |
+
# compute the previous noisy sample x_t -> x_t-1
|
196 |
+
_latent = pipe.scheduler.step(noise_pred, t, _latent, return_dict=False)[0]
|
197 |
+
# the scheduler is not state-less, it maintains a step index that is incremented by one after each step,
|
198 |
+
# so we need to decrease it here
|
199 |
+
if hasattr(pipe.scheduler, "_step_index"):
|
200 |
+
pipe.scheduler._step_index -= 1
|
201 |
+
|
202 |
+
if type(pipe.scheduler) == FlowMatchEulerDiscreteScheduler:
|
203 |
+
dt = 0.0 - pipe.scheduler.sigmas[i]
|
204 |
+
x0_pred = _latent + dt * noise_pred
|
205 |
+
else:
|
206 |
+
raise NotImplementedError("Only Flow Scheduler is supported for now! For other schedulers, you need to manually implement the x0 prediction step.")
|
207 |
+
|
208 |
+
x0_preds.append(x0_pred)
|
209 |
+
next_latents.append(_latent)
|
210 |
+
|
211 |
+
if hasattr(pipe.scheduler, "_step_index"):
|
212 |
+
pipe.scheduler._step_index += 1
|
213 |
+
|
214 |
+
# if the size of next_latents > output_group_size, prune the latents
|
215 |
+
if len(next_latents) > output_group_size:
|
216 |
+
next_size = get_next_size(len(next_latents), output_group_size, 1 - pruning_ratio)
|
217 |
+
print(f"Pruning from {len(next_latents)} to {next_size}")
|
218 |
+
# decode the latents to pixels with tiny-vae
|
219 |
+
l_x0_decoded = [decode_latent(_latent, pipe, height, width) for _latent in x0_preds]
|
220 |
+
# compute the unary and binary scores
|
221 |
+
l_unary_scores = unary_score_fn(l_x0_decoded, target_caption=prompt)
|
222 |
+
M_binary_scores = binary_score_fn(l_x0_decoded) # upper triangular matrix
|
223 |
+
# run with Quadratic Integer Programming sover
|
224 |
+
selected_indices = gurobi_solver(l_unary_scores, M_binary_scores, next_size, lam=lambda_score)
|
225 |
+
l_latents = [next_latents[_i] for _i in selected_indices]
|
226 |
+
else:
|
227 |
+
l_latents = next_latents
|
228 |
+
|
229 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
|
230 |
+
progress_bar.update()
|
231 |
+
|
232 |
+
pipe._current_timestep = None
|
233 |
+
|
234 |
+
l_images = [pipe._unpack_latents(_latent, height, width, pipe.vae_scale_factor) for _latent in l_latents]
|
235 |
+
l_images = [(latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor for latents in l_images]
|
236 |
+
l_images = [pipe.vae.decode(_image, return_dict=False)[0] for _image in l_images]
|
237 |
+
l_images_tensor = [image.clamp(-1, 1) for image in l_images] # Keep tensor version for scoring
|
238 |
+
l_images = [pipe.image_processor.postprocess(image, output_type="pil")[0] for image in l_images]
|
239 |
+
|
240 |
+
# Compute and print final scores
|
241 |
+
print(f"\n=== Final Scores for {len(l_images)} generated images ===")
|
242 |
+
|
243 |
+
# Compute unary scores
|
244 |
+
final_unary_scores = unary_score_fn(l_images_tensor, target_caption=prompt)
|
245 |
+
print(f"Unary scores (quality): {final_unary_scores}")
|
246 |
+
print(f"Mean unary score: {np.mean(final_unary_scores):.4f}")
|
247 |
+
|
248 |
+
# Compute binary scores
|
249 |
+
final_binary_scores = binary_score_fn(l_images_tensor)
|
250 |
+
print(f"Binary score matrix (diversity):")
|
251 |
+
print(final_binary_scores)
|
252 |
+
|
253 |
+
print("=" * 50)
|
254 |
+
|
255 |
+
pipe.maybe_free_model_hooks()
|
256 |
+
return l_images
|
257 |
+
|
my_utils/scores.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.nn as nn
|
6 |
+
import torchvision.models as models
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
from transformers import CLIPProcessor, CLIPModel, AutoModel
|
11 |
+
from transformers.models.clip.modeling_clip import _get_vector_norm
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
def validate_tensor_list(tensor_list, expected_type=torch.Tensor, min_dims=None, value_range=None, tolerance=0.1):
|
16 |
+
"""
|
17 |
+
Validates a list of tensors with specified requirements.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
tensor_list: List to validate
|
21 |
+
expected_type: Expected type of each element (default: torch.Tensor)
|
22 |
+
min_dims: Minimum number of dimensions each tensor should have
|
23 |
+
value_range: Tuple of (min_val, max_val) for tensor values
|
24 |
+
tolerance: Tolerance for value range checking (default: 0.1)
|
25 |
+
"""
|
26 |
+
if not isinstance(tensor_list, list):
|
27 |
+
raise TypeError(f"Input must be a list, got {type(tensor_list)}")
|
28 |
+
|
29 |
+
if len(tensor_list) == 0:
|
30 |
+
raise ValueError("Input list cannot be empty")
|
31 |
+
|
32 |
+
for i, item in enumerate(tensor_list):
|
33 |
+
if not isinstance(item, expected_type):
|
34 |
+
raise TypeError(f"List element [{i}] must be {expected_type}, got {type(item)}")
|
35 |
+
|
36 |
+
if min_dims is not None and len(item.shape) < min_dims:
|
37 |
+
raise ValueError(f"List element [{i}] must have at least {min_dims} dimensions, got shape {item.shape}")
|
38 |
+
|
39 |
+
if value_range is not None:
|
40 |
+
min_val, max_val = value_range
|
41 |
+
item_min, item_max = item.min().item(), item.max().item()
|
42 |
+
if item_min < (min_val - tolerance) or item_max > (max_val + tolerance):
|
43 |
+
raise ValueError(f"List element [{i}] values must be in range [{min_val}, {max_val}], got range [{item_min:.3f}, {item_max:.3f}]")
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def build_score_fn(name, device="cuda"):
|
48 |
+
"""Build scoring functions for image quality and diversity assessment.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
name: Score function name (clip_text_img, diversity_dino, dino_cls_pairwise, diversity_clip)
|
52 |
+
device: Device to load models on (default: cuda)
|
53 |
+
"""
|
54 |
+
d_score_nets = {}
|
55 |
+
|
56 |
+
if name == "clip_text_img":
|
57 |
+
m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
58 |
+
prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
59 |
+
score_fn = functools.partial(unary_clip_text_img_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
|
60 |
+
d_score_nets["m_clip"] = m_clip
|
61 |
+
d_score_nets["prep_clip"] = prep_clip
|
62 |
+
|
63 |
+
elif name == "diversity_dino":
|
64 |
+
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
|
65 |
+
score_fn = functools.partial(binary_dino_pairwise_t, device=device, dino_model=dino_model)
|
66 |
+
d_score_nets["dino_model"] = dino_model
|
67 |
+
|
68 |
+
elif name == "dino_cls_pairwise":
|
69 |
+
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
|
70 |
+
score_fn = functools.partial(binary_dino_cls_pairwise_t, device=device, dino_model=dino_model)
|
71 |
+
d_score_nets["dino_model"] = dino_model
|
72 |
+
|
73 |
+
elif name == "diversity_clip":
|
74 |
+
m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
75 |
+
prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
76 |
+
score_fn = functools.partial(binary_clip_pairwise_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
|
77 |
+
d_score_nets["m_clip"] = m_clip
|
78 |
+
d_score_nets["prep_clip"] = prep_clip
|
79 |
+
|
80 |
+
else:
|
81 |
+
raise ValueError(f"Invalid score function name: {name}")
|
82 |
+
|
83 |
+
return score_fn, d_score_nets
|
84 |
+
|
85 |
+
|
86 |
+
@torch.no_grad()
|
87 |
+
def unary_clip_text_img_t(l_images, device, m_clip, preprocess_clip, target_caption, d_cache=None):
|
88 |
+
"""Compute CLIP text-image similarity scores for a list of images.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
l_images: List of image tensors in range [-1, 1]
|
92 |
+
device: Device for computation
|
93 |
+
m_clip: CLIP model
|
94 |
+
preprocess_clip: CLIP processor
|
95 |
+
target_caption: Text prompt for similarity comparison
|
96 |
+
d_cache: Optional cached text embeddings
|
97 |
+
"""
|
98 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
99 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
100 |
+
|
101 |
+
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
|
102 |
+
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
|
103 |
+
b_images = torch.cat(l_images, dim=0)
|
104 |
+
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
|
105 |
+
# re-normalize with clip mean and std
|
106 |
+
b_images = b_images*0.5 + 0.5
|
107 |
+
b_images = (b_images - _img_mean) / _img_std
|
108 |
+
|
109 |
+
if d_cache is None:
|
110 |
+
text_encoding = preprocess_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
|
111 |
+
output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image /m_clip.logit_scale.exp()
|
112 |
+
_score = output.view(-1).cpu().numpy()
|
113 |
+
else:
|
114 |
+
# compute with cached text embeddings
|
115 |
+
vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
|
116 |
+
interpolate_pos_encoding=False, return_dict=True,)
|
117 |
+
image_embeds = m_clip.visual_projection(vision_outputs[1])
|
118 |
+
image_embeds = image_embeds / _get_vector_norm(image_embeds)
|
119 |
+
text_embeds = d_cache["text_embeds"]
|
120 |
+
_score = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)).t().view(-1).cpu().numpy()
|
121 |
+
|
122 |
+
return _score
|
123 |
+
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def binary_dino_pairwise_t(l_images, device, dino_model):
|
127 |
+
"""Compute pairwise diversity scores using DINO patch features.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
l_images: List of image tensors in range [-1, 1]
|
131 |
+
device: Device for computation
|
132 |
+
dino_model: DINO model for feature extraction
|
133 |
+
"""
|
134 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
135 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
136 |
+
|
137 |
+
b_images = torch.cat(l_images, dim=0)
|
138 |
+
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
139 |
+
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
140 |
+
|
141 |
+
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
|
142 |
+
b_images = b_images*0.5 + 0.5
|
143 |
+
b_images = (b_images - _img_mean) / _img_std
|
144 |
+
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu() # B, 324, 768
|
145 |
+
|
146 |
+
N = len(l_images)
|
147 |
+
score_matrix = np.zeros((N, N))
|
148 |
+
for i in range(N):
|
149 |
+
f1 = all_features[i]
|
150 |
+
for j in range(i+1, N):
|
151 |
+
f2 = all_features[j]
|
152 |
+
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
|
153 |
+
score_matrix[i, j] = cos_sim
|
154 |
+
return score_matrix
|
155 |
+
|
156 |
+
@torch.no_grad()
|
157 |
+
def binary_dino_cls_pairwise_t(l_images, device, dino_model):
|
158 |
+
"""Compute pairwise diversity scores using DINO CLS token features.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
l_images: List of image tensors in range [-1, 1]
|
162 |
+
device: Device for computation
|
163 |
+
dino_model: DINO model for feature extraction
|
164 |
+
"""
|
165 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
166 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
167 |
+
|
168 |
+
b_images = torch.cat(l_images, dim=0)
|
169 |
+
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
170 |
+
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
171 |
+
|
172 |
+
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
|
173 |
+
b_images = b_images*0.5 + 0.5
|
174 |
+
b_images = (b_images - _img_mean) / _img_std
|
175 |
+
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu() # B, 1, 768
|
176 |
+
|
177 |
+
N = len(l_images)
|
178 |
+
score_matrix = np.zeros((N, N))
|
179 |
+
for i in range(N):
|
180 |
+
f1 = all_features[i]
|
181 |
+
for j in range(i+1, N):
|
182 |
+
f2 = all_features[j]
|
183 |
+
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
|
184 |
+
score_matrix[i, j] = cos_sim
|
185 |
+
return score_matrix
|
186 |
+
|
187 |
+
@torch.no_grad()
|
188 |
+
def binary_clip_pairwise_t(l_images, device, m_clip, preprocess_clip):
|
189 |
+
"""Compute pairwise diversity scores using CLIP image embeddings.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
l_images: List of image tensors in range [-1, 1]
|
193 |
+
device: Device for computation
|
194 |
+
m_clip: CLIP model
|
195 |
+
preprocess_clip: CLIP processor
|
196 |
+
"""
|
197 |
+
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
|
198 |
+
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
|
199 |
+
|
200 |
+
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
|
201 |
+
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
|
202 |
+
b_images = torch.cat(l_images, dim=0)
|
203 |
+
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
|
204 |
+
# re-normalize with clip mean and std
|
205 |
+
b_images = b_images*0.5 + 0.5
|
206 |
+
b_images = (b_images - _img_mean) / _img_std
|
207 |
+
|
208 |
+
vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
|
209 |
+
interpolate_pos_encoding=False, return_dict=True,)
|
210 |
+
image_embeds = m_clip.visual_projection(vision_outputs[1])
|
211 |
+
image_embeds = image_embeds / _get_vector_norm(image_embeds)
|
212 |
+
|
213 |
+
N = len(l_images)
|
214 |
+
score_matrix = np.zeros((N, N))
|
215 |
+
for i in range(N):
|
216 |
+
f1 = image_embeds[i]
|
217 |
+
for j in range(i+1, N):
|
218 |
+
f2 = image_embeds[j]
|
219 |
+
cos_sim = (1 - torch.dot(f1, f2)).item()
|
220 |
+
score_matrix[i, j] = cos_sim
|
221 |
+
return score_matrix
|
my_utils/solvers.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gurobipy import Model, GRB, quicksum
|
2 |
+
|
3 |
+
|
4 |
+
def gurobi_solver(u, D, n_select, lam=1.0, time_limit=5.0):
|
5 |
+
"""Solve quadratic integer programming problem for subset selection with unary and pairwise terms.
|
6 |
+
|
7 |
+
Args:
|
8 |
+
u: Unary scores for each item
|
9 |
+
D: Pairwise similarity matrix (upper triangular)
|
10 |
+
n_select: Number of items to select
|
11 |
+
lam: Weight for pairwise term (default: 1.0)
|
12 |
+
time_limit: Solver time limit in seconds (default: 5.0)
|
13 |
+
"""
|
14 |
+
n = len(u)
|
15 |
+
model = Model()
|
16 |
+
model.Params.LogToConsole = 0
|
17 |
+
model.Params.TimeLimit = time_limit
|
18 |
+
model.Params.OutputFlag = 0
|
19 |
+
|
20 |
+
# Variables: x[i] in {0,1}
|
21 |
+
x = model.addVars(n, vtype=GRB.BINARY, name="x")
|
22 |
+
# Constraint: exactly k items selected
|
23 |
+
model.addConstr(quicksum(x[i] for i in range(n)) == n_select, name="select_k")
|
24 |
+
|
25 |
+
# Objective: sum of unary + lambda * pairwise
|
26 |
+
linear_part = quicksum(u[i] * x[i] for i in range(n))
|
27 |
+
quadratic_part = quicksum(lam * D[i, j] * x[i] * x[j] for i in range(n) for j in range(i + 1, n))
|
28 |
+
|
29 |
+
model.setObjective(linear_part + quadratic_part, GRB.MAXIMIZE)
|
30 |
+
|
31 |
+
model.optimize()
|
32 |
+
selected_indices = [i for i in range(n) if x[i].X > 0.5]
|
33 |
+
return selected_indices
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.7.1
|
2 |
+
torchvision==0.22.1
|
3 |
+
torchaudio==2.7.1
|
4 |
+
opencv-python
|
5 |
+
transformers
|
6 |
+
sentencepiece
|
7 |
+
protobuf
|
8 |
+
accelerate
|
9 |
+
diffusers==0.35.1
|
10 |
+
gurobipy
|
11 |
+
bitsandbytes
|
12 |
+
git+https://github.com/openai/CLIP.git
|
13 |
+
ipdb
|
14 |
+
https://github.com/nunchaku-tech/nunchaku/releases/download/v0.3.1/nunchaku-0.3.1+torch2.7-cp310-cp310-linux_x86_64.whl
|
styles.css
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@import url('https://fonts.googleapis.com/css2?family=Varela+Round&display=swap');
|
2 |
+
|
3 |
+
::selection {
|
4 |
+
background: rgba(255, 251, 35, 0.58);
|
5 |
+
}
|
6 |
+
|
7 |
+
body {
|
8 |
+
max-width: 1000px !important;
|
9 |
+
margin: 0 auto !important;
|
10 |
+
}
|
11 |
+
|
12 |
+
.title_left {
|
13 |
+
padding-top: 0vw !important;
|
14 |
+
filter: none !important;
|
15 |
+
}
|
16 |
+
.title_left > h1 {
|
17 |
+
color: #2f2f2f !important;
|
18 |
+
font-family: "Gelasio",Georgia,serif !important;
|
19 |
+
font-weight: normal !important;
|
20 |
+
font-size: 2.0vw !important;
|
21 |
+
text-align: center !important;
|
22 |
+
}
|
23 |
+
|
24 |
+
.title_left > h2 {
|
25 |
+
color: #2f2f2f !important;
|
26 |
+
font-family: "Gelasio",Georgia,serif !important;
|
27 |
+
font-weight: normal !important;
|
28 |
+
font-size: 1.5vw !important;
|
29 |
+
text-align: center !important;
|
30 |
+
}
|
31 |
+
|
32 |
+
.author-container {
|
33 |
+
color: #2f2f2f;
|
34 |
+
font-family: Gelasio,"Avenir Next",Helvetica,sans-serif;
|
35 |
+
font-weight: normal;
|
36 |
+
font-size: 1vw;
|
37 |
+
padding-top: 0.2vw;
|
38 |
+
justify-items: center;
|
39 |
+
justify-content: center;
|
40 |
+
display: grid;
|
41 |
+
grid-template-columns: auto auto auto auto auto;
|
42 |
+
}
|
43 |
+
|
44 |
+
.affiliation-container {
|
45 |
+
color: #2f2f2f;
|
46 |
+
font-family: Gelasio,"Avenir Next",Helvetica,sans-serif;
|
47 |
+
font-weight: normal;
|
48 |
+
font-size: 1vw;
|
49 |
+
padding-top: 0.2vw;
|
50 |
+
justify-items: center;
|
51 |
+
justify-content: center;
|
52 |
+
display: grid;
|
53 |
+
grid-template-columns: auto auto auto auto auto;
|
54 |
+
}
|
55 |
+
|
56 |
+
.grid-item {
|
57 |
+
text-align: center;
|
58 |
+
padding-right: 0.7vw;
|
59 |
+
padding-left: 0.7vw;
|
60 |
+
}
|
61 |
+
|
62 |
+
.grid-item > a {
|
63 |
+
color: #2f2f2f;
|
64 |
+
text-decoration: underline;
|
65 |
+
text-underline-offset: 3px;
|
66 |
+
}
|
67 |
+
|
68 |
+
.grid-item.cmu > a {
|
69 |
+
text-decoration-color: rgba(196, 18, 48, 0.2)
|
70 |
+
}
|
71 |
+
|
72 |
+
.grid-item.cmu > p::before {
|
73 |
+
content: "";
|
74 |
+
display: inline-block;
|
75 |
+
width: 12px;
|
76 |
+
height: 12px;
|
77 |
+
background-color: rgba(196, 18, 48, 0.6);
|
78 |
+
margin-right: 8px;
|
79 |
+
vertical-align: middle;
|
80 |
+
}
|
81 |
+
|
82 |
+
.grid-item.snap > a {
|
83 |
+
text-decoration-color: rgba(255,252,0, 0.4)
|
84 |
+
}
|
85 |
+
|
86 |
+
.grid-item.snap > p::before {
|
87 |
+
content: "";
|
88 |
+
display: inline-block;
|
89 |
+
width: 12px;
|
90 |
+
height: 12px;
|
91 |
+
background-color: rgba(255, 252, 0, 0.6);
|
92 |
+
margin-right: 8px;
|
93 |
+
vertical-align: middle;
|
94 |
+
}
|
95 |
+
|
96 |
+
.grid-item.cmu > p,
|
97 |
+
.grid-item.snap > p {
|
98 |
+
color: #2f2f2f;
|
99 |
+
}
|
100 |
+
|
101 |
+
.column {
|
102 |
+
min-width: min(100px, 100%) !important;
|
103 |
+
}
|
104 |
+
|
105 |
+
.block {
|
106 |
+
min-width: min(100px, 100%) !important;
|
107 |
+
background: transparent !important;
|
108 |
+
border: none !important;
|
109 |
+
}
|
110 |
+
|
111 |
+
.gr-box, .gr-form, .gr-panel {
|
112 |
+
background: transparent !important;
|
113 |
+
border: none !important;
|
114 |
+
}
|
115 |
+
|
116 |
+
.gr-row, .gr-column {
|
117 |
+
background: transparent !important;
|
118 |
+
}
|
119 |
+
|
120 |
+
.gr-textbox, .gr-number, .gr-slider, .gr-dropdown {
|
121 |
+
background: rgba(255, 255, 255, 0.1) !important;
|
122 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
123 |
+
backdrop-filter: blur(10px) !important;
|
124 |
+
}
|
125 |
+
|
126 |
+
.gr-button {
|
127 |
+
background: rgba(255, 255, 255, 0.15) !important;
|
128 |
+
border: 1px solid rgba(255, 255, 255, 0.3) !important;
|
129 |
+
backdrop-filter: blur(10px) !important;
|
130 |
+
}
|
131 |
+
|
132 |
+
.gr-accordion {
|
133 |
+
background: rgba(255, 255, 255, 0.05) !important;
|
134 |
+
border: 1px solid rgba(255, 255, 255, 0.1) !important;
|
135 |
+
backdrop-filter: blur(5px) !important;
|
136 |
+
}
|
137 |
+
|
138 |
+
.gr-gallery {
|
139 |
+
background: rgba(255, 255, 255, 0.05) !important;
|
140 |
+
border: 1px solid rgba(255, 255, 255, 0.1) !important;
|
141 |
+
backdrop-filter: blur(5px) !important;
|
142 |
+
}
|
143 |
+
|
144 |
+
#starting-candidates-row > #component-7 {
|
145 |
+
border: none !important;
|
146 |
+
/* font-family: "Varela Round" !important;
|
147 |
+
font-weight: 500 !important; */
|
148 |
+
}
|
149 |
+
|
150 |
+
#output-group-size-row >#component-10{
|
151 |
+
border: none !important;
|
152 |
+
/* font-family: "Varela Round" !important; */
|
153 |
+
/* font-weight: 500 !important; */
|
154 |
+
}
|
155 |
+
|
156 |
+
#pruning-ratio-label, #lambda-label, #seed-label, #unary-term-label, #binary-term-label {
|
157 |
+
border: none !important;
|
158 |
+
/* font-family: "Varela Round" !important;
|
159 |
+
font-weight: 500 !important; */
|
160 |
+
}
|