Spaces:
Paused
Paused
| from fastapi import FastAPI, Query | |
| from pydantic import BaseModel | |
| import cloudscraper | |
| from bs4 import BeautifulSoup | |
| from transformers import pipeline | |
| import torch | |
| import re | |
| import os | |
| #os.environ["HF_HOME"] = "/home/user/huggingface" | |
| #os.environ["TRANSFORMERS_CACHE"] = "/home/user/huggingface" | |
| app = FastAPI() | |
| class ThreadResponse(BaseModel): | |
| question: str | |
| replies: list[str] | |
| def clean_text(text: str) -> str: | |
| text = text.strip() | |
| text = re.sub(r"\b\d+\s*likes?,?\s*\d*\s*replies?$", "", text, flags=re.IGNORECASE).strip() | |
| return text | |
| def scrape(url: str = Query(...)): | |
| scraper = cloudscraper.create_scraper() | |
| response = scraper.get(url) | |
| if response.status_code == 200: | |
| soup = BeautifulSoup(response.content, 'html.parser') | |
| comment_containers = soup.find_all('div', class_='post__content') | |
| if comment_containers: | |
| question = clean_text(comment_containers[0].get_text(strip=True, separator="\n")) | |
| replies = [clean_text(comment.get_text(strip=True, separator="\n")) for comment in comment_containers[1:]] | |
| return ThreadResponse(question=question, replies=replies) | |
| return ThreadResponse(question="", replies=[]) | |
| MODEL_NAME = "deepseek-ai/DeepSeek-R1" | |
| # Load the pipeline once at startup with device auto-mapping | |
| text_generator = pipeline( | |
| "text-generation", | |
| model=MODEL_NAME, | |
| trust_remote_code=True, | |
| device=0 if torch.cuda.is_available() else -1, | |
| ) | |
| class PromptRequest(BaseModel): | |
| prompt: str | |
| async def generate_text(request: PromptRequest): | |
| # Prepare messages as expected by the model pipeline | |
| messages = [{"role": "user", "content": request.prompt}] | |
| # Call the pipeline with messages | |
| outputs = text_generator(messages) | |
| # The pipeline returns a list of dicts with 'generated_text' | |
| generated_text = outputs[0]['generated_text'] | |
| # Optional: parse reasoning and content if your model uses special tags like </think> | |
| if "</think>" in generated_text: | |
| reasoning_content = generated_text.split("</think>")[0].strip() | |
| content = generated_text.split("</think>")[1].strip() | |
| else: | |
| reasoning_content = "" | |
| content = generated_text.strip() | |
| return { | |
| "reasoning_content": reasoning_content, | |
| "generated_text": content | |
| } |