Spaces:
Runtime error
Runtime error
| # from ultralytics import YOLO | |
| import os | |
| import io | |
| import base64 | |
| import time | |
| from PIL import Image, ImageDraw, ImageFont | |
| import json | |
| import requests | |
| # utility function | |
| import os | |
| import json | |
| import sys | |
| import os | |
| import cv2 | |
| import numpy as np | |
| # %matplotlib inline | |
| from matplotlib import pyplot as plt | |
| import easyocr | |
| from paddleocr import PaddleOCR | |
| reader = easyocr.Reader(['en']) | |
| paddle_ocr = PaddleOCR( | |
| lang='en', # other lang also available | |
| use_angle_cls=False, | |
| use_gpu=False, # using cuda will conflict with pytorch in the same process | |
| show_log=False, | |
| max_batch_size=1024, | |
| use_dilation=True, # improves accuracy | |
| det_db_score_mode='slow', # improves accuracy | |
| rec_batch_num=1024) | |
| import time | |
| import base64 | |
| import os | |
| import ast | |
| import torch | |
| from typing import Tuple, List, Union | |
| from torchvision.ops import box_convert | |
| import re | |
| from torchvision.transforms import ToPILImage | |
| import supervision as sv | |
| import torchvision.transforms as T | |
| from util.box_annotator import BoxAnnotator | |
| def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None): | |
| if not device: | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if model_name == "blip2": | |
| from transformers import Blip2Processor, Blip2ForConditionalGeneration | |
| processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
| if device == 'cpu': | |
| model = Blip2ForConditionalGeneration.from_pretrained( | |
| model_name_or_path, device_map=None, torch_dtype=torch.float32 | |
| ) | |
| else: | |
| model = Blip2ForConditionalGeneration.from_pretrained( | |
| model_name_or_path, device_map=None, torch_dtype=torch.float16 | |
| ).to(device) | |
| elif model_name == "florence2": | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) | |
| if device == 'cpu': | |
| model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True) | |
| else: | |
| model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device) | |
| return {'model': model.to(device), 'processor': processor} | |
| def get_yolo_model(model_path): | |
| from ultralytics import YOLO | |
| # Load the model. | |
| model = YOLO(model_path) | |
| return model | |
| def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=None): | |
| # Number of samples per batch, --> 256 roughly takes 23 GB of GPU memory for florence model | |
| to_pil = ToPILImage() | |
| if starting_idx: | |
| non_ocr_boxes = filtered_boxes[starting_idx:] | |
| else: | |
| non_ocr_boxes = filtered_boxes | |
| croped_pil_image = [] | |
| for i, coord in enumerate(non_ocr_boxes): | |
| try: | |
| xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) | |
| ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) | |
| cropped_image = image_source[ymin:ymax, xmin:xmax, :] | |
| cropped_image = cv2.resize(cropped_image, (64, 64)) | |
| croped_pil_image.append(to_pil(cropped_image)) | |
| except: | |
| continue | |
| model, processor = caption_model_processor['model'], caption_model_processor['processor'] | |
| if not prompt: | |
| if 'florence' in model.config.name_or_path: | |
| prompt = "<CAPTION>" | |
| else: | |
| prompt = "The image shows" | |
| generated_texts = [] | |
| device = model.device | |
| # batch_size = 64 | |
| for i in range(0, len(croped_pil_image), batch_size): | |
| start = time.time() | |
| batch = croped_pil_image[i:i+batch_size] | |
| t1 = time.time() | |
| if model.device.type == 'cuda': | |
| inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt", do_resize=False).to(device=device, dtype=torch.float16) | |
| else: | |
| inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device) | |
| # if 'florence' in model.config.name_or_path: | |
| generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=20,num_beams=1, do_sample=False) | |
| # else: | |
| # generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True, | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
| generated_text = [gen.strip() for gen in generated_text] | |
| generated_texts.extend(generated_text) | |
| return generated_texts | |
| def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor): | |
| to_pil = ToPILImage() | |
| if ocr_bbox: | |
| non_ocr_boxes = filtered_boxes[len(ocr_bbox):] | |
| else: | |
| non_ocr_boxes = filtered_boxes | |
| croped_pil_image = [] | |
| for i, coord in enumerate(non_ocr_boxes): | |
| xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1]) | |
| ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0]) | |
| cropped_image = image_source[ymin:ymax, xmin:xmax, :] | |
| croped_pil_image.append(to_pil(cropped_image)) | |
| model, processor = caption_model_processor['model'], caption_model_processor['processor'] | |
| device = model.device | |
| messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}] | |
| prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| batch_size = 5 # Number of samples per batch | |
| generated_texts = [] | |
| for i in range(0, len(croped_pil_image), batch_size): | |
| images = croped_pil_image[i:i+batch_size] | |
| image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images] | |
| inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []} | |
| texts = [prompt] * len(images) | |
| for i, txt in enumerate(texts): | |
| input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt") | |
| inputs['input_ids'].append(input['input_ids']) | |
| inputs['attention_mask'].append(input['attention_mask']) | |
| inputs['pixel_values'].append(input['pixel_values']) | |
| inputs['image_sizes'].append(input['image_sizes']) | |
| max_len = max([x.shape[1] for x in inputs['input_ids']]) | |
| for i, v in enumerate(inputs['input_ids']): | |
| inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1) | |
| inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1) | |
| inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()} | |
| generation_args = { | |
| "max_new_tokens": 25, | |
| "temperature": 0.01, | |
| "do_sample": False, | |
| } | |
| generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) | |
| # # remove input tokens | |
| generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:] | |
| response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
| response = [res.strip('\n').strip() for res in response] | |
| generated_texts.extend(response) | |
| return generated_texts | |
| def remove_overlap(boxes, iou_threshold, ocr_bbox=None): | |
| assert ocr_bbox is None or isinstance(ocr_bbox, List) | |
| def box_area(box): | |
| return (box[2] - box[0]) * (box[3] - box[1]) | |
| def intersection_area(box1, box2): | |
| x1 = max(box1[0], box2[0]) | |
| y1 = max(box1[1], box2[1]) | |
| x2 = min(box1[2], box2[2]) | |
| y2 = min(box1[3], box2[3]) | |
| return max(0, x2 - x1) * max(0, y2 - y1) | |
| def IoU(box1, box2): | |
| intersection = intersection_area(box1, box2) | |
| union = box_area(box1) + box_area(box2) - intersection + 1e-6 | |
| if box_area(box1) > 0 and box_area(box2) > 0: | |
| ratio1 = intersection / box_area(box1) | |
| ratio2 = intersection / box_area(box2) | |
| else: | |
| ratio1, ratio2 = 0, 0 | |
| return max(intersection / union, ratio1, ratio2) | |
| def is_inside(box1, box2): | |
| # return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3] | |
| intersection = intersection_area(box1, box2) | |
| ratio1 = intersection / box_area(box1) | |
| return ratio1 > 0.95 | |
| boxes = boxes.tolist() | |
| filtered_boxes = [] | |
| if ocr_bbox: | |
| filtered_boxes.extend(ocr_bbox) | |
| # print('ocr_bbox!!!', ocr_bbox) | |
| for i, box1 in enumerate(boxes): | |
| # if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j): | |
| is_valid_box = True | |
| for j, box2 in enumerate(boxes): | |
| # keep the smaller box | |
| if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): | |
| is_valid_box = False | |
| break | |
| if is_valid_box: | |
| # add the following 2 lines to include ocr bbox | |
| if ocr_bbox: | |
| # only add the box if it does not overlap with any ocr bbox | |
| if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)): | |
| filtered_boxes.append(box1) | |
| else: | |
| filtered_boxes.append(box1) | |
| return torch.tensor(filtered_boxes) | |
| def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None): | |
| ''' | |
| ocr_bbox format: [{'type': 'text', 'bbox':[x,y], 'interactivity':False, 'content':str }, ...] | |
| boxes format: [{'type': 'icon', 'bbox':[x,y], 'interactivity':True, 'content':None }, ...] | |
| ''' | |
| assert ocr_bbox is None or isinstance(ocr_bbox, List) | |
| def box_area(box): | |
| return (box[2] - box[0]) * (box[3] - box[1]) | |
| def intersection_area(box1, box2): | |
| x1 = max(box1[0], box2[0]) | |
| y1 = max(box1[1], box2[1]) | |
| x2 = min(box1[2], box2[2]) | |
| y2 = min(box1[3], box2[3]) | |
| return max(0, x2 - x1) * max(0, y2 - y1) | |
| def IoU(box1, box2): | |
| intersection = intersection_area(box1, box2) | |
| union = box_area(box1) + box_area(box2) - intersection + 1e-6 | |
| if box_area(box1) > 0 and box_area(box2) > 0: | |
| ratio1 = intersection / box_area(box1) | |
| ratio2 = intersection / box_area(box2) | |
| else: | |
| ratio1, ratio2 = 0, 0 | |
| return max(intersection / union, ratio1, ratio2) | |
| def is_inside(box1, box2): | |
| # return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3] | |
| intersection = intersection_area(box1, box2) | |
| ratio1 = intersection / box_area(box1) | |
| return ratio1 > 0.80 | |
| # boxes = boxes.tolist() | |
| filtered_boxes = [] | |
| if ocr_bbox: | |
| filtered_boxes.extend(ocr_bbox) | |
| # print('ocr_bbox!!!', ocr_bbox) | |
| for i, box1_elem in enumerate(boxes): | |
| box1 = box1_elem['bbox'] | |
| is_valid_box = True | |
| for j, box2_elem in enumerate(boxes): | |
| # keep the smaller box | |
| box2 = box2_elem['bbox'] | |
| if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2): | |
| is_valid_box = False | |
| break | |
| if is_valid_box: | |
| if ocr_bbox: | |
| # keep yolo boxes + prioritize ocr label | |
| box_added = False | |
| ocr_labels = '' | |
| for box3_elem in ocr_bbox: | |
| if not box_added: | |
| box3 = box3_elem['bbox'] | |
| if is_inside(box3, box1): # ocr inside icon | |
| # box_added = True | |
| # delete the box3_elem from ocr_bbox | |
| try: | |
| # gather all ocr labels | |
| ocr_labels += box3_elem['content'] + ' ' | |
| filtered_boxes.remove(box3_elem) | |
| except: | |
| continue | |
| # break | |
| elif is_inside(box1, box3): # icon inside ocr, don't added this icon box, no need to check other ocr bbox bc no overlap between ocr bbox, icon can only be in one ocr box | |
| box_added = True | |
| break | |
| else: | |
| continue | |
| if not box_added: | |
| if ocr_labels: | |
| filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': ocr_labels,}) | |
| else: | |
| filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None, }) | |
| else: | |
| filtered_boxes.append(box1) | |
| return filtered_boxes # torch.tensor(filtered_boxes) | |
| def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]: | |
| transform = T.Compose( | |
| [ | |
| T.RandomResize([800], max_size=1333), | |
| T.ToTensor(), | |
| T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| image_source = Image.open(image_path).convert("RGB") | |
| image = np.asarray(image_source) | |
| image_transformed, _ = transform(image_source, None) | |
| return image, image_transformed | |
| def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float, | |
| text_padding=5, text_thickness=2, thickness=3) -> np.ndarray: | |
| """ | |
| This function annotates an image with bounding boxes and labels. | |
| Parameters: | |
| image_source (np.ndarray): The source image to be annotated. | |
| boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale | |
| logits (torch.Tensor): A tensor containing confidence scores for each bounding box. | |
| phrases (List[str]): A list of labels for each bounding box. | |
| text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web | |
| Returns: | |
| np.ndarray: The annotated image. | |
| """ | |
| h, w, _ = image_source.shape | |
| boxes = boxes * torch.Tensor([w, h, w, h]) | |
| xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy() | |
| xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy() | |
| detections = sv.Detections(xyxy=xyxy) | |
| labels = [f"{phrase}" for phrase in range(boxes.shape[0])] | |
| box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web | |
| annotated_frame = image_source.copy() | |
| annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h)) | |
| label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)} | |
| return annotated_frame, label_coordinates | |
| def predict(model, image, caption, box_threshold, text_threshold): | |
| """ Use huggingface model to replace the original model | |
| """ | |
| model, processor = model['model'], model['processor'] | |
| device = model.device | |
| inputs = processor(images=image, text=caption, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| results = processor.post_process_grounded_object_detection( | |
| outputs, | |
| inputs.input_ids, | |
| box_threshold=box_threshold, # 0.4, | |
| text_threshold=text_threshold, # 0.3, | |
| target_sizes=[image.size[::-1]] | |
| )[0] | |
| boxes, logits, phrases = results["boxes"], results["scores"], results["labels"] | |
| return boxes, logits, phrases | |
| def predict_yolo(model, image, box_threshold, imgsz, scale_img, iou_threshold=0.7): | |
| """ Use huggingface model to replace the original model | |
| """ | |
| # model = model['model'] | |
| if scale_img: | |
| result = model.predict( | |
| source=image, | |
| conf=box_threshold, | |
| imgsz=imgsz, | |
| iou=iou_threshold, # default 0.7 | |
| ) | |
| else: | |
| result = model.predict( | |
| source=image, | |
| conf=box_threshold, | |
| iou=iou_threshold, # default 0.7 | |
| ) | |
| boxes = result[0].boxes.xyxy#.tolist() # in pixel space | |
| conf = result[0].boxes.conf | |
| phrases = [str(i) for i in range(len(boxes))] | |
| return boxes, conf, phrases | |
| def int_box_area(box, w, h): | |
| x1, y1, x2, y2 = box | |
| int_box = [int(x1*w), int(y1*h), int(x2*w), int(y2*h)] | |
| area = (int_box[2] - int_box[0]) * (int_box[3] - int_box[1]) | |
| return area | |
| def get_som_labeled_img(image_source: Union[str, Image.Image], model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=False, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=64): | |
| """Process either an image path or Image object | |
| Args: | |
| image_source: Either a file path (str) or PIL Image object | |
| ... | |
| """ | |
| if isinstance(image_source, str): | |
| image_source = Image.open(image_source).convert("RGB") | |
| w, h = image_source.size | |
| if not imgsz: | |
| imgsz = (h, w) | |
| # print('image size:', w, h) | |
| xyxy, logits, phrases = predict_yolo(model=model, image=image_source, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1) | |
| xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device) | |
| image_source = np.asarray(image_source) | |
| phrases = [str(i) for i in range(len(phrases))] | |
| # annotate the image with labels | |
| if ocr_bbox: | |
| ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h]) | |
| ocr_bbox=ocr_bbox.tolist() | |
| else: | |
| print('no ocr bbox!!!') | |
| ocr_bbox = None | |
| ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt,} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0] | |
| xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0] | |
| filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem) | |
| # sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None | |
| filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None) | |
| # get the index of the first 'content': None | |
| starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1) | |
| filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem]) | |
| print('len(filtered_boxes):', len(filtered_boxes), starting_idx) | |
| # get parsed icon local semantics | |
| time1 = time.time() | |
| if use_local_semantics: | |
| caption_model = caption_model_processor['model'] | |
| if 'phi3_v' in caption_model.config.model_type: | |
| parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor) | |
| else: | |
| parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size) | |
| ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] | |
| icon_start = len(ocr_text) | |
| parsed_content_icon_ls = [] | |
| # fill the filtered_boxes_elem None content with parsed_content_icon in order | |
| for i, box in enumerate(filtered_boxes_elem): | |
| if box['content'] is None: | |
| box['content'] = parsed_content_icon.pop(0) | |
| for i, txt in enumerate(parsed_content_icon): | |
| parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}") | |
| parsed_content_merged = ocr_text + parsed_content_icon_ls | |
| else: | |
| ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)] | |
| parsed_content_merged = ocr_text | |
| print('time to get parsed content:', time.time()-time1) | |
| filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh") | |
| phrases = [i for i in range(len(filtered_boxes))] | |
| # draw boxes | |
| if draw_bbox_config: | |
| annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config) | |
| else: | |
| annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding) | |
| pil_img = Image.fromarray(annotated_frame) | |
| buffered = io.BytesIO() | |
| pil_img.save(buffered, format="PNG") | |
| encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii') | |
| if output_coord_in_ratio: | |
| label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()} | |
| assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0] | |
| return encoded_image, label_coordinates, filtered_boxes_elem | |
| def get_xywh(input): | |
| x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1] | |
| x, y, w, h = int(x), int(y), int(w), int(h) | |
| return x, y, w, h | |
| def get_xyxy(input): | |
| x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1] | |
| x, y, xp, yp = int(x), int(y), int(xp), int(yp) | |
| return x, y, xp, yp | |
| def get_xywh_yolo(input): | |
| x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1] | |
| x, y, w, h = int(x), int(y), int(w), int(h) | |
| return x, y, w, h | |
| def check_ocr_box(image_source: Union[str, Image.Image], display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False): | |
| if isinstance(image_source, str): | |
| image_source = Image.open(image_source) | |
| if image_source.mode == 'RGBA': | |
| # Convert RGBA to RGB to avoid alpha channel issues | |
| image_source = image_source.convert('RGB') | |
| image_np = np.array(image_source) | |
| w, h = image_source.size | |
| if use_paddleocr: | |
| if easyocr_args is None: | |
| text_threshold = 0.5 | |
| else: | |
| text_threshold = easyocr_args['text_threshold'] | |
| result = paddle_ocr.ocr(image_np, cls=False)[0] | |
| coord = [item[0] for item in result if item[1][1] > text_threshold] | |
| text = [item[1][0] for item in result if item[1][1] > text_threshold] | |
| else: # EasyOCR | |
| if easyocr_args is None: | |
| easyocr_args = {} | |
| result = reader.readtext(image_np, **easyocr_args) | |
| coord = [item[0] for item in result] | |
| text = [item[1] for item in result] | |
| if display_img: | |
| opencv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) | |
| bb = [] | |
| for item in coord: | |
| x, y, a, b = get_xywh(item) | |
| bb.append((x, y, a, b)) | |
| cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2) | |
| # matplotlib expects RGB | |
| plt.imshow(cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB)) | |
| else: | |
| if output_bb_format == 'xywh': | |
| bb = [get_xywh(item) for item in coord] | |
| elif output_bb_format == 'xyxy': | |
| bb = [get_xyxy(item) for item in coord] | |
| return (text, bb), goal_filtering | |