Spaces:
Running
on
A10G
Running
on
A10G
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| from src.euler_scheduler import MyEulerAncestralDiscreteScheduler | |
| from diffusers.pipelines.auto_pipeline import AutoPipelineForImage2Image | |
| from src.sdxl_inversion_pipeline import SDXLDDIMPipeline | |
| from src.config import RunConfig | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| scheduler_class = MyEulerAncestralDiscreteScheduler | |
| pipe_inversion = SDXLDDIMPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) | |
| pipe_inference = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True).to(device) | |
| pipe_inference.scheduler = scheduler_class.from_config(pipe_inference.scheduler.config) | |
| pipe_inversion.scheduler = scheduler_class.from_config(pipe_inversion.scheduler.config) | |
| pipe_inversion.scheduler_inference = scheduler_class.from_config(pipe_inference.scheduler.config) | |
| # if torch.cuda.is_available(): | |
| # torch.cuda.max_memory_allocated(device=device) | |
| # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
| # pipe.enable_xformers_memory_efficient_attention() | |
| # pipe = pipe.to(device) | |
| # else: | |
| # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
| # pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps=4, num_inversion_steps=4, inversion_max_step=0.6): | |
| config = RunConfig(num_inference_steps=num_inference_steps, | |
| num_inversion_steps=num_inversion_steps, | |
| guidance_scale=guidance_scale, | |
| inversion_max_step=inversion_max_step) | |
| editor = ImageEditorDemo(pipe_inversion, pipe_inference, input_image, description_prompt, config) | |
| editor.edit(target_prompt) | |
| return image | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(f""" | |
| # RNRI briel and links on device: {power_device}. | |
| """) | |
| with gr.Column(elem_id="col-container"): | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input image", sources=['upload', 'webcam', 'clipboard'], type="pil") | |
| with gr.Row(): | |
| description_prompt = gr.Text( | |
| label="Image description", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your image description", | |
| container=False, | |
| ) | |
| with gr.Row(): | |
| target_prompt = gr.Text( | |
| label="Edit prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your edit prompt", | |
| container=False, | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of RNRI iterations", | |
| minimum=1, | |
| maximum=12, | |
| step=1, | |
| value=2, | |
| ) | |
| with gr.Row(): | |
| run_button = gr.Button("Edit", scale=0) | |
| with gr.Column(elem_id="col-container"): | |
| result = gr.Image(label="Result", show_label=False) | |
| # gr.Examples( | |
| # examples = examples, | |
| # inputs = [prompt] | |
| # ) | |
| run_button.click( | |
| fn = infer, | |
| inputs = [input_image, description_prompt, target_prompt, guidance_scale, num_inference_steps, num_inference_steps], | |
| outputs = [result] | |
| ) | |
| demo.queue().launch() |