Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoProcessor | |
| import torch | |
| from PIL import Image | |
| import subprocess | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| user_prompt = '<|user|>\n' | |
| assistant_prompt = '<|assistant|>\n' | |
| prompt_suffix = "<|end|>\n" | |
| model_name = "microsoft/Phi-3.5-vision-instruct" | |
| # Lazy-load the model and processor at runtime | |
| def get_model_and_processor(model_id): | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| trust_remote_code=True, | |
| torch_dtype=torch.bfloat16 | |
| ).cuda().eval() | |
| processor = AutoProcessor.from_pretrained( | |
| model_id, | |
| trust_remote_code=True | |
| ) | |
| return model, processor | |
| def run_example(image, text_input=None, model_id=model_name): | |
| model, processor = get_model_and_processor(model_id) | |
| prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
| image = Image.fromarray(image).convert("RGB") | |
| inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
| generate_ids = model.generate( | |
| **inputs, | |
| max_new_tokens=1000, | |
| eos_token_id=processor.tokenizer.eos_token_id | |
| ) | |
| generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
| response = processor.batch_decode( | |
| generate_ids, | |
| skip_special_tokens=True, | |
| clean_up_tokenization_spaces=False | |
| )[0] | |
| return response | |
| css = """ | |
| #output { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| # Create the Gradio interface | |
| demo = gr.Blocks(css=css) | |
| with demo: | |
| gr.Markdown("## Phi-3.5 Vision Instruct Demo with Example Inputs") | |
| with gr.Tab(label="Phi-3.5 Input"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="Input Picture") | |
| model_selector = gr.Dropdown( | |
| choices=[model_name], | |
| label="Model", | |
| value=model_name | |
| ) | |
| text_input = gr.Textbox(label="Question") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output Text") | |
| examples = [ | |
| ["image1.jpeg", "What does this painting tell us explain in detail?"], | |
| ["image2.jpg", "What does this painting tell us explain in detail?"], | |
| ["image3.jpg", "Describe the scene in this picture."] | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[input_img, text_input], | |
| examples_per_page=3 | |
| ) | |
| submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) | |
| # Queue and launch the demo | |
| demo.queue() | |
| demo.launch(server_name="0.0.0.0") |