Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,561 Bytes
86be4e6 2b8b77d 1eb5467 e1fcf74 2b8b77d e2371c5 f1c3cc1 3c2c999 e6d3f1b cb42b1e b365a93 8570e29 e6d3f1b b365a93 e6d3f1b 003a054 cb42b1e 815fecf cb42b1e 815fecf cb42b1e 815fecf 158bf4e 815fecf 158bf4e 815fecf 158bf4e 815fecf cb42b1e 815fecf 3b53d1c 815fecf df2f72d 815fecf 3b53d1c 815fecf df2f72d 815fecf cb42b1e 815fecf cb42b1e 815fecf cb42b1e 815fecf 3b53d1c 815fecf cb42b1e 3b53d1c 815fecf 158bf4e 815fecf a821008 815fecf cb42b1e 815fecf 9d731d3 cb42b1e ed049a0 cb42b1e 3b53d1c ed049a0 7bddc43 3b53d1c 7bddc43 3b53d1c 7bddc43 3b53d1c 7bddc43 3b53d1c 7bddc43 3b53d1c 7bddc43 3b53d1c 7bddc43 b365a93 9fc9078 cb42b1e f217e4d df2f72d 7b9e6e4 718ba97 7bddc43 518583e 7bddc43 cb42b1e 7bddc43 cb42b1e 7bddc43 cb42b1e 7bddc43 a821008 7bddc43 a821008 479e0d8 7bddc43 7c696fc 479e0d8 10c555d 479e0d8 7bddc43 815fecf cb42b1e 9fc9078 cb42b1e 815fecf 479e0d8 7bddc43 815fecf 7bddc43 cd2465c 3b53d1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import os
import uuid
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline, AutoencoderTiny
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.utils import export_to_video
import random
from transformers import pipeline
# Translation model load
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# English menu labels
english_labels = {
"Prompt": "Prompt",
"1st direction to steer": "1st Direction",
"2nd direction to steer": "2nd Direction",
"Strength": "Strength",
"Generate directions": "Generate Directions",
"Generated Images": "Generated Images",
"From 1st to 2nd direction": "From 1st to 2nd Direction",
"Strip": "Image Strip",
"Looping video": "Looping Video",
"Advanced options": "Advanced Options",
"Num of intermediate images": "Number of Intermediate Images",
"Num iterations for clip directions": "Number of CLIP Direction Iterations",
"Num inference steps": "Number of Inference Steps",
"Guidance scale": "Guidance Scale",
"Randomize seed": "Randomize Seed",
"Seed": "Seed"
}
# Load pipelines
base_model = "black-forest-labs/FLUX.1-schnell"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda")
pipe = FluxPipeline.from_pretrained(
base_model,
vae=taef1,
torch_dtype=torch.bfloat16
)
pipe.transformer.to(memory_format=torch.channels_last)
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
MAX_SEED = 2**32 - 1
def save_images_with_unique_filenames(image_list, save_directory):
if not os.path.exists(save_directory):
os.makedirs(save_directory)
paths = []
for image in image_list:
unique_filename = f"{uuid.uuid4()}.png"
file_path = os.path.join(save_directory, unique_filename)
image.save(file_path)
paths.append(file_path)
return paths
def convert_to_centered_scale(num):
if num % 2 == 0: # even
start = -(num // 2 - 1)
end = num // 2
else: # odd
start = -(num // 2)
end = num // 2
return tuple(range(start, end + 1))
def translate_if_korean(text):
if any('\u3131' <= char <= '\u3163' or '\uac00' <= char <= '\ud7a3' for char in text):
return translator(text)[0]['translation_text']
return text
@spaces.GPU(duration=85)
def generate(prompt,
concept_1,
concept_2,
scale,
randomize_seed=True,
seed=42,
recalc_directions=True,
iterations=200,
steps=3,
interm_steps=33,
guidance_scale=3.5,
x_concept_1="", x_concept_2="",
avg_diff_x=None,
total_images=[],
gradio_progress=gr.Progress()):
# Translate prompt and concepts if Korean
prompt = translate_if_korean(prompt)
concept_1 = translate_if_korean(concept_1)
concept_2 = translate_if_korean(concept_2)
print(f"Prompt: {prompt}, โ {concept_2}, {concept_1} โก๏ธ . scale {scale}, interm steps {interm_steps}")
slider_x = [concept_2, concept_1]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
gradio_progress(0, desc="Calculating directions...")
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
else:
avg_diff = avg_diff_x
images = []
high_scale = scale
low_scale = -1 * scale
for i in gradio_progress.tqdm(range(interm_steps), desc="Generating images"):
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
image = clip_slider.generate(
prompt,
width=768,
height=768,
guidance_scale=guidance_scale,
scale=cur_scale,
seed=seed,
num_inference_steps=steps,
avg_diff=avg_diff
)
images.append(image)
canvas = Image.new('RGB', (256 * interm_steps, 256))
for i, im in enumerate(images):
canvas.paste(im.resize((256, 256)), (256 * i, 0))
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
scale_total = convert_to_centered_scale(interm_steps)
scale_min = scale_total[0]
scale_max = scale_total[-1]
scale_middle = scale_total.index(0)
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True)
avg_diff_x = avg_diff.cpu()
video_path = f"{uuid.uuid4()}.mp4"
print(video_path)
return x_concept_1, x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed
def update_pre_generated_images(slider_value, total_images):
number_images = len(total_images) if total_images else 0
if number_images > 0:
scale_tuple = convert_to_centered_scale(number_images)
return total_images[scale_tuple.index(slider_value)][0]
else:
return None
def reset_recalc_directions():
return True
# Five "Time Stream" themed examples (one Korean example included)
examples = [
["์ ์ ํ ํ ๋งํ ๊ฐ ๋ถํจํ ํ ๋งํ ๋ก ๋ณํด๊ฐ๋ ๊ณผ์ ", "Fresh", "Rotten", 2.0],
["A blooming flower gradually withers into decay", "Bloom", "Wither", 1.5],
["A vibrant cityscape transforms into a derelict ruin over time", "Modern", "Ruined", 2.5],
["A lively forest slowly changes into an autumnal landscape", "Spring", "Autumn", 2.0],
["A calm ocean evolves into a stormy seascape as time passes", "Calm", "Stormy", 3.0]
]
# CSS for a bright and modern UI with a background image
css = """
/* Bright and modern UI with background image */
body {
background: #ffffff url('https://images.unsplash.com/photo-1506748686214-e9df14d4d9d0?ixlib=rb-1.2.1&auto=format&fit=crop&w=1600&q=80') no-repeat center center fixed;
background-size: cover;
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
color: #333;
}
footer {
visibility: hidden;
}
.container {
max-width: 1200px;
margin: 20px auto;
padding: 0 10px;
}
.main-panel {
background-color: rgba(255, 255, 255, 0.9);
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.controls-panel {
background-color: rgba(255, 255, 255, 0.85);
border-radius: 8px;
padding: 16px;
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05);
}
.image-display {
min-height: 400px;
display: flex;
flex-direction: column;
justify-content: center;
}
.slider-container {
padding: 10px 0;
}
.advanced-panel {
margin-top: 20px;
border-top: 1px solid #eaeaea;
padding-top: 20px;
}
"""
with gr.Blocks(css=css, title="Time Stream") as demo:
gr.Markdown("# Time Stream")
x_concept_1 = gr.State("")
x_concept_2 = gr.State("")
total_images = gr.State([])
avg_diff_x = gr.State()
recalc_directions = gr.State(False)
with gr.Row(elem_classes="container"):
# Left Column - Controls
with gr.Column(scale=4):
with gr.Group(elem_classes="main-panel"):
gr.Markdown("### Image Generation Controls")
with gr.Group(elem_classes="controls-panel"):
prompt = gr.Textbox(
label=english_labels["Prompt"],
info="Enter the description",
placeholder="A dog in the park",
lines=2
)
with gr.Row():
with gr.Column(scale=1):
concept_1 = gr.Textbox(
label=english_labels["1st direction to steer"],
info="Initial state",
placeholder="Fresh"
)
with gr.Column(scale=1):
concept_2 = gr.Textbox(
label=english_labels["2nd direction to steer"],
info="Final state",
placeholder="Rotten"
)
with gr.Row(elem_classes="slider-container"):
x = gr.Slider(
minimum=0,
value=1.75,
step=0.1,
maximum=4.0,
label=english_labels["Strength"],
info="Maximum strength for each direction (above 2.5 may be unstable)"
)
submit = gr.Button(english_labels["Generate directions"], size="lg", variant="primary")
with gr.Accordion(label=english_labels["Advanced options"], open=False, elem_classes="advanced-panel"):
with gr.Row():
with gr.Column(scale=1):
interm_steps = gr.Slider(
label=english_labels["Num of intermediate images"],
minimum=3,
value=7,
maximum=65,
step=2
)
with gr.Column(scale=1):
guidance_scale = gr.Slider(
label=english_labels["Guidance scale"],
minimum=0.1,
maximum=10.0,
step=0.1,
value=3.5
)
with gr.Row():
with gr.Column(scale=1):
iterations = gr.Slider(
label=english_labels["Num iterations for clip directions"],
minimum=0,
value=200,
maximum=400,
step=1
)
with gr.Column(scale=1):
steps = gr.Slider(
label=english_labels["Num inference steps"],
minimum=1,
value=3,
maximum=4,
step=1
)
with gr.Row():
with gr.Column(scale=1):
randomize_seed = gr.Checkbox(
True,
label=english_labels["Randomize seed"]
)
with gr.Column(scale=1):
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
label=english_labels["Seed"],
interactive=True,
randomize=True
)
# Right Column - Output
with gr.Column(scale=8):
with gr.Group(elem_classes="main-panel"):
gr.Markdown("### Generated Results")
# Swapped order: Image strip on top, video below (video is larger)
image_strip = gr.Image(label="Image Strip", type="filepath", elem_id="strip", height=200)
output_video = gr.Video(label=english_labels["Looping video"], elem_id="video", loop=True, autoplay=True, height=600)
with gr.Row():
post_generation_image = gr.Image(
label=english_labels["Generated Images"],
type="filepath",
elem_id="interactive",
elem_classes="image-display"
)
post_generation_slider = gr.Slider(
minimum=-10,
maximum=10,
value=0,
step=1,
label=english_labels["From 1st to 2nd direction"]
)
# Examples: ์์ ํด๋ฆญ ์ ์
๋ ฅ๋์ ๊ฐ์ด ๋ฐ๋ก ์ฝ์
๋จ
gr.Examples(
examples=examples,
inputs=[prompt, concept_1, concept_2, x]
)
# Event Handlers
submit.click(
fn=generate,
inputs=[
prompt, concept_1, concept_2, x, randomize_seed, seed,
recalc_directions, iterations, steps, interm_steps,
guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images
],
outputs=[
x_concept_1, x_concept_2, avg_diff_x,
output_video, # video output
image_strip, # canvas (image strip)
total_images,
post_generation_image,
post_generation_slider,
seed
]
)
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
post_generation_slider.change(
fn=update_pre_generated_images,
inputs=[post_generation_slider, total_images],
outputs=[post_generation_image],
queue=False,
show_progress="hidden",
concurrency_limit=None
)
if __name__ == "__main__":
demo.launch()
|