# GPU 패치: NVIDIA 드라이버가 없으면 torch.cuda 관련 호출이 CPU 디바이스로 전환되도록 처리 import torch if not torch.cuda.is_available(): # torch.cuda.current_device()가 호출되면 0을 반환하도록 패치하고, # torch.device(정수)를 요청받으면 "cpu" 장치로 반환하도록 변경합니다. torch.cuda.current_device = lambda: 0 original_torch_device = torch.device def patched_torch_device(arg): if isinstance(arg, int): return original_torch_device("cpu") return original_torch_device(arg) torch.device = patched_torch_device import comfy.options comfy.options.enable_args_parsing() import os import importlib.util import folder_paths import time from comfy.cli_args import args from app.logger import setup_logger setup_logger(log_level=args.verbose) def execute_prestartup_script(): def execute_script(script_path): module_name = os.path.splitext(script_path)[0] try: spec = importlib.util.spec_from_file_location(module_name, script_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return True except Exception as e: print(f"Failed to execute startup-script: {script_path} / {e}") return False if args.disable_all_custom_nodes: return node_paths = folder_paths.get_folder_paths("custom_nodes") node_prestartup_times = [] # 모든 노드의 실행시간을 누적합니다. for custom_node_path in node_paths: possible_modules = os.listdir(custom_node_path) for possible_module in possible_modules: module_path = os.path.join(custom_node_path, possible_module) if os.path.isfile(module_path) or module_path.endswith(".disabled") or possible_module == "__pycache__": continue script_path = os.path.join(module_path, "prestartup_script.py") if os.path.exists(script_path): time_before = time.perf_counter() success = execute_script(script_path) elapsed = time.perf_counter() - time_before node_prestartup_times.append((elapsed, module_path, success)) if node_prestartup_times: # Rich 라이브러리가 있다면 테이블 형식으로 출력합니다. try: from rich.console import Console from rich.table import Table console = Console() table = Table(title="Prestartup Times for Custom Nodes") table.add_column("Time (s)", justify="right") table.add_column("Status") table.add_column("Custom Node Path") for elapsed, module_path, success in sorted(node_prestartup_times, key=lambda x: x[0]): status = "[green]Success[/green]" if success else "[red]Failed[/red]" table.add_row(f"{elapsed:.1f}", status, module_path) console.print(table) except ImportError: # Rich 미설치 시 기존 print 방식 사용 print("\nPrestartup times for custom nodes:") for elapsed, module_path, success in sorted(node_prestartup_times, key=lambda x: x[0]): import_message = "" if success else " (PRESTARTUP FAILED)" print("{:6.1f} seconds{}:".format(elapsed, import_message), module_path) print() execute_prestartup_script() # Main code import asyncio import itertools import shutil import threading import gc import logging import utils.extra_config if os.name == "nt": logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) if __name__ == "__main__": if args.cuda_device is not None: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device) os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device) logging.info("Set cuda device to: {}".format(args.cuda_device)) if args.deterministic: if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ: os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8" import cuda_malloc if args.windows_standalone_build: try: import fix_torch except Exception: pass import comfy.utils import execution import server from server import BinaryEventTypes import nodes import comfy.model_management # NVIDIA GPU 드라이버가 없는 경우 경고 메시지를 남깁니다. if not torch.cuda.is_available(): logging.warning("No NVIDIA GPU driver found. Running in CPU mode. Performance may be degraded.") def cuda_malloc_warning(): device = comfy.model_management.get_torch_device() device_name = comfy.model_management.get_torch_device_name(device) warning_needed = False if "cudaMallocAsync" in device_name: for b in cuda_malloc.blacklist: if b in device_name: warning_needed = True if warning_needed: logging.warning("\nWARNING: this card most likely does not support cuda-malloc, if you get 'CUDA error' please run ComfyUI with: --disable-cuda-malloc\n") def prompt_worker(q, server): e = execution.PromptExecutor(server, lru_size=args.cache_lru) last_gc_collect = 0 need_gc = False gc_collect_interval = 10.0 while True: timeout = 1000.0 if need_gc: timeout = max(gc_collect_interval - (time.perf_counter() - last_gc_collect), 0.0) queue_item = q.get(timeout=timeout) if queue_item is not None: item, item_id = queue_item execution_start_time = time.perf_counter() prompt_id = item[1] server.last_prompt_id = prompt_id e.execute(item[2], prompt_id, item[3], item[4]) need_gc = True q.task_done(item_id, e.history_result, status=execution.PromptQueue.ExecutionStatus( status_str='success' if e.success else 'error', completed=e.success, messages=e.status_messages)) if server.client_id is not None: server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id) current_time = time.perf_counter() execution_time = current_time - execution_start_time logging.info("Prompt executed in {:.2f} seconds".format(execution_time)) flags = q.get_flags() free_memory = flags.get("free_memory", False) if flags.get("unload_models", free_memory): comfy.model_management.unload_all_models() need_gc = True last_gc_collect = 0 if free_memory: e.reset() need_gc = True last_gc_collect = 0 if need_gc: current_time = time.perf_counter() if (current_time - last_gc_collect) > gc_collect_interval: comfy.model_management.cleanup_models() gc.collect() comfy.model_management.soft_empty_cache() last_gc_collect = current_time need_gc = False async def run(server, address='', port=8188, verbose=True, call_on_start=None): addresses = [] for addr in address.split(","): addresses.append((addr, port)) await asyncio.gather(server.start_multi_address(addresses, call_on_start), server.publish_loop()) def hijack_progress(server): def hook(value, total, preview_image): comfy.model_management.throw_exception_if_processing_interrupted() progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id} server.send_sync("progress", progress, server.client_id) if preview_image is not None: server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id) comfy.utils.set_progress_bar_global_hook(hook) def cleanup_temp(): temp_dir = folder_paths.get_temp_directory() if os.path.exists(temp_dir): shutil.rmtree(temp_dir, ignore_errors=True) if __name__ == "__main__": if args.temp_directory: temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp") logging.info(f"Setting temp directory to: {temp_dir}") folder_paths.set_temp_directory(temp_dir) cleanup_temp() if args.windows_standalone_build: try: import new_updater new_updater.update_windows_updater() except Exception: pass loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) server = server.PromptServer(loop) q = execution.PromptQueue(server) extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml") if os.path.isfile(extra_model_paths_config_path): utils.extra_config.load_extra_path_config(extra_model_paths_config_path) if args.extra_model_paths_config: for config_path in itertools.chain(*args.extra_model_paths_config): utils.extra_config.load_extra_path_config(config_path) nodes.init_extra_nodes(init_custom_nodes=not args.disable_all_custom_nodes) cuda_malloc_warning() server.add_routes() hijack_progress(server) threading.Thread(target=prompt_worker, daemon=True, args=(q, server,)).start() if args.output_directory: output_dir = os.path.abspath(args.output_directory) logging.info(f"Setting output directory to: {output_dir}") folder_paths.set_output_directory(output_dir) # 기본 모델 저장 폴더 경로 설정 folder_paths.add_model_folder_path("checkpoints", os.path.join(folder_paths.get_output_directory(), "checkpoints")) folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip")) folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae")) folder_paths.add_model_folder_path("diffusion_models", os.path.join(folder_paths.get_output_directory(), "diffusion_models")) folder_paths.add_model_folder_path("loras", os.path.join(folder_paths.get_output_directory(), "loras")) if args.input_directory: input_dir = os.path.abspath(args.input_directory) logging.info(f"Setting input directory to: {input_dir}") folder_paths.set_input_directory(input_dir) if args.user_directory: user_dir = os.path.abspath(args.user_directory) logging.info(f"Setting user directory to: {user_dir}") folder_paths.set_user_directory(user_dir) if args.quick_test_for_ci: exit(0) os.makedirs(folder_paths.get_temp_directory(), exist_ok=True) call_on_start = None if args.auto_launch: def startup_server(scheme, address, port): import webbrowser if os.name == 'nt' and address == '0.0.0.0': address = '127.0.0.1' if ':' in address: address = "[{}]".format(address) webbrowser.open(f"{scheme}://{address}:{port}") call_on_start = startup_server try: loop.run_until_complete(server.setup()) loop.run_until_complete(run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start)) except KeyboardInterrupt: logging.info("\nStopped server") cleanup_temp()