File size: 11,496 Bytes
e54a9a6
 
 
 
 
 
 
 
 
 
 
 
 
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54a9a6
4450790
 
 
 
e54a9a6
4450790
 
 
 
 
 
e54a9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54a9a6
4450790
 
 
 
 
 
 
 
 
 
e54a9a6
 
 
 
4450790
 
 
e54a9a6
4450790
 
 
e54a9a6
 
 
4450790
 
 
 
 
 
 
 
 
 
e54a9a6
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54a9a6
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e54a9a6
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# GPU ํŒจ์น˜: NVIDIA ๋“œ๋ผ์ด๋ฒ„๊ฐ€ ์—†์œผ๋ฉด torch.cuda ๊ด€๋ จ ํ˜ธ์ถœ์ด CPU ๋””๋ฐ”์ด์Šค๋กœ ์ „ํ™˜๋˜๋„๋ก ์ฒ˜๋ฆฌ
import torch
if not torch.cuda.is_available():
    # torch.cuda.current_device()๊ฐ€ ํ˜ธ์ถœ๋˜๋ฉด 0์„ ๋ฐ˜ํ™˜ํ•˜๋„๋ก ํŒจ์น˜ํ•˜๊ณ ,
    # torch.device(์ •์ˆ˜)๋ฅผ ์š”์ฒญ๋ฐ›์œผ๋ฉด "cpu" ์žฅ์น˜๋กœ ๋ฐ˜ํ™˜ํ•˜๋„๋ก ๋ณ€๊ฒฝํ•ฉ๋‹ˆ๋‹ค.
    torch.cuda.current_device = lambda: 0
    original_torch_device = torch.device
    def patched_torch_device(arg):
        if isinstance(arg, int):
            return original_torch_device("cpu")
        return original_torch_device(arg)
    torch.device = patched_torch_device

import comfy.options
comfy.options.enable_args_parsing()

import os
import importlib.util
import folder_paths
import time
from comfy.cli_args import args
from app.logger import setup_logger

setup_logger(log_level=args.verbose)

def execute_prestartup_script():
    def execute_script(script_path):
        module_name = os.path.splitext(script_path)[0]
        try:
            spec = importlib.util.spec_from_file_location(module_name, script_path)
            module = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(module)
            return True
        except Exception as e:
            print(f"Failed to execute startup-script: {script_path} / {e}")
        return False

    if args.disable_all_custom_nodes:
        return

    node_paths = folder_paths.get_folder_paths("custom_nodes")
    node_prestartup_times = []  # ๋ชจ๋“  ๋…ธ๋“œ์˜ ์‹คํ–‰์‹œ๊ฐ„์„ ๋ˆ„์ ํ•ฉ๋‹ˆ๋‹ค.
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) or module_path.endswith(".disabled") or possible_module == "__pycache__":
                continue

            script_path = os.path.join(module_path, "prestartup_script.py")
            if os.path.exists(script_path):
                time_before = time.perf_counter()
                success = execute_script(script_path)
                elapsed = time.perf_counter() - time_before
                node_prestartup_times.append((elapsed, module_path, success))
    
    if node_prestartup_times:
        # Rich ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๊ฐ€ ์žˆ๋‹ค๋ฉด ํ…Œ์ด๋ธ” ํ˜•์‹์œผ๋กœ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค.
        try:
            from rich.console import Console
            from rich.table import Table
            console = Console()
            table = Table(title="Prestartup Times for Custom Nodes")
            table.add_column("Time (s)", justify="right")
            table.add_column("Status")
            table.add_column("Custom Node Path")
            for elapsed, module_path, success in sorted(node_prestartup_times, key=lambda x: x[0]):
                status = "[green]Success[/green]" if success else "[red]Failed[/red]"
                table.add_row(f"{elapsed:.1f}", status, module_path)
            console.print(table)
        except ImportError:
            # Rich ๋ฏธ์„ค์น˜ ์‹œ ๊ธฐ์กด print ๋ฐฉ์‹ ์‚ฌ์šฉ
            print("\nPrestartup times for custom nodes:")
            for elapsed, module_path, success in sorted(node_prestartup_times, key=lambda x: x[0]):
                import_message = "" if success else " (PRESTARTUP FAILED)"
                print("{:6.1f} seconds{}:".format(elapsed, import_message), module_path)
        print()

execute_prestartup_script()


# Main code
import asyncio
import itertools
import shutil
import threading
import gc

import logging
import utils.extra_config

if os.name == "nt":
    logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())

if __name__ == "__main__":
    if args.cuda_device is not None:
        os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
        os.environ['HIP_VISIBLE_DEVICES'] = str(args.cuda_device)
        logging.info("Set cuda device to: {}".format(args.cuda_device))

    if args.deterministic:
        if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
            os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"

    import cuda_malloc

if args.windows_standalone_build:
    try:
        import fix_torch
    except Exception:
        pass

import comfy.utils

import execution
import server
from server import BinaryEventTypes
import nodes
import comfy.model_management

# NVIDIA GPU ๋“œ๋ผ์ด๋ฒ„๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ๊ฒฝ๊ณ  ๋ฉ”์‹œ์ง€๋ฅผ ๋‚จ๊น๋‹ˆ๋‹ค.
if not torch.cuda.is_available():
    logging.warning("No NVIDIA GPU driver found. Running in CPU mode. Performance may be degraded.")

def cuda_malloc_warning():
    device = comfy.model_management.get_torch_device()
    device_name = comfy.model_management.get_torch_device_name(device)
    warning_needed = False
    if "cudaMallocAsync" in device_name:
        for b in cuda_malloc.blacklist:
            if b in device_name:
                warning_needed = True
        if warning_needed:
            logging.warning("\nWARNING: this card most likely does not support cuda-malloc, if you get 'CUDA error' please run ComfyUI with: --disable-cuda-malloc\n")

def prompt_worker(q, server):
    e = execution.PromptExecutor(server, lru_size=args.cache_lru)
    last_gc_collect = 0
    need_gc = False
    gc_collect_interval = 10.0

    while True:
        timeout = 1000.0
        if need_gc:
            timeout = max(gc_collect_interval - (time.perf_counter() - last_gc_collect), 0.0)

        queue_item = q.get(timeout=timeout)
        if queue_item is not None:
            item, item_id = queue_item
            execution_start_time = time.perf_counter()
            prompt_id = item[1]
            server.last_prompt_id = prompt_id

            e.execute(item[2], prompt_id, item[3], item[4])
            need_gc = True
            q.task_done(item_id,
                        e.history_result,
                        status=execution.PromptQueue.ExecutionStatus(
                            status_str='success' if e.success else 'error',
                            completed=e.success,
                            messages=e.status_messages))
            if server.client_id is not None:
                server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, server.client_id)

            current_time = time.perf_counter()
            execution_time = current_time - execution_start_time
            logging.info("Prompt executed in {:.2f} seconds".format(execution_time))

        flags = q.get_flags()
        free_memory = flags.get("free_memory", False)

        if flags.get("unload_models", free_memory):
            comfy.model_management.unload_all_models()
            need_gc = True
            last_gc_collect = 0

        if free_memory:
            e.reset()
            need_gc = True
            last_gc_collect = 0

        if need_gc:
            current_time = time.perf_counter()
            if (current_time - last_gc_collect) > gc_collect_interval:
                comfy.model_management.cleanup_models()
                gc.collect()
                comfy.model_management.soft_empty_cache()
                last_gc_collect = current_time
                need_gc = False

async def run(server, address='', port=8188, verbose=True, call_on_start=None):
    addresses = []
    for addr in address.split(","):
        addresses.append((addr, port))
    await asyncio.gather(server.start_multi_address(addresses, call_on_start), server.publish_loop())

def hijack_progress(server):
    def hook(value, total, preview_image):
        comfy.model_management.throw_exception_if_processing_interrupted()
        progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id}

        server.send_sync("progress", progress, server.client_id)
        if preview_image is not None:
            server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id)
    comfy.utils.set_progress_bar_global_hook(hook)

def cleanup_temp():
    temp_dir = folder_paths.get_temp_directory()
    if os.path.exists(temp_dir):
        shutil.rmtree(temp_dir, ignore_errors=True)

if __name__ == "__main__":
    if args.temp_directory:
        temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
        logging.info(f"Setting temp directory to: {temp_dir}")
        folder_paths.set_temp_directory(temp_dir)
    cleanup_temp()

    if args.windows_standalone_build:
        try:
            import new_updater
            new_updater.update_windows_updater()
        except Exception:
            pass

    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    server = server.PromptServer(loop)
    q = execution.PromptQueue(server)

    extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml")
    if os.path.isfile(extra_model_paths_config_path):
        utils.extra_config.load_extra_path_config(extra_model_paths_config_path)

    if args.extra_model_paths_config:
        for config_path in itertools.chain(*args.extra_model_paths_config):
            utils.extra_config.load_extra_path_config(config_path)

    nodes.init_extra_nodes(init_custom_nodes=not args.disable_all_custom_nodes)

    cuda_malloc_warning()

    server.add_routes()
    hijack_progress(server)

    threading.Thread(target=prompt_worker, daemon=True, args=(q, server,)).start()

    if args.output_directory:
        output_dir = os.path.abspath(args.output_directory)
        logging.info(f"Setting output directory to: {output_dir}")
        folder_paths.set_output_directory(output_dir)

    # ๊ธฐ๋ณธ ๋ชจ๋ธ ์ €์žฅ ํด๋” ๊ฒฝ๋กœ ์„ค์ •
    folder_paths.add_model_folder_path("checkpoints", os.path.join(folder_paths.get_output_directory(), "checkpoints"))
    folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip"))
    folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae"))
    folder_paths.add_model_folder_path("diffusion_models", os.path.join(folder_paths.get_output_directory(), "diffusion_models"))
    folder_paths.add_model_folder_path("loras", os.path.join(folder_paths.get_output_directory(), "loras"))

    if args.input_directory:
        input_dir = os.path.abspath(args.input_directory)
        logging.info(f"Setting input directory to: {input_dir}")
        folder_paths.set_input_directory(input_dir)
    
    if args.user_directory:
        user_dir = os.path.abspath(args.user_directory)
        logging.info(f"Setting user directory to: {user_dir}")
        folder_paths.set_user_directory(user_dir)

    if args.quick_test_for_ci:
        exit(0)

    os.makedirs(folder_paths.get_temp_directory(), exist_ok=True)
    call_on_start = None
    if args.auto_launch:
        def startup_server(scheme, address, port):
            import webbrowser
            if os.name == 'nt' and address == '0.0.0.0':
                address = '127.0.0.1'
            if ':' in address:
                address = "[{}]".format(address)
            webbrowser.open(f"{scheme}://{address}:{port}")
        call_on_start = startup_server

    try:
        loop.run_until_complete(server.setup())
        loop.run_until_complete(run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server, call_on_start=call_on_start))
    except KeyboardInterrupt:
        logging.info("\nStopped server")

    cleanup_temp()