Delete hooks/useHandDetection.js
Browse files- hooks/useHandDetection.js +0 -253
hooks/useHandDetection.js
DELETED
|
@@ -1,253 +0,0 @@
|
|
| 1 |
-
import { useState, useEffect, useRef } from 'react';
|
| 2 |
-
import * as tf from '@tensorflow/tfjs';
|
| 3 |
-
import * as cocossd from '@tensorflow-models/coco-ssd';
|
| 4 |
-
|
| 5 |
-
const useCardDetection = (videoRef, canvasRef, isMobile) => {
|
| 6 |
-
const [model, setModel] = useState(null);
|
| 7 |
-
const [cardDetected, setCardDetected] = useState(false);
|
| 8 |
-
const [detectedCards, setDetectedCards] = useState([]);
|
| 9 |
-
const [cardCount, setCardCount] = useState(0);
|
| 10 |
-
const [isFirstLoad, setIsFirstLoad] = useState(true);
|
| 11 |
-
|
| 12 |
-
const requestRef = useRef(null);
|
| 13 |
-
const lastDetectionTimeRef = useRef(0);
|
| 14 |
-
const isComponentMounted = useRef(true);
|
| 15 |
-
|
| 16 |
-
// Initialize the object detection model
|
| 17 |
-
useEffect(() => {
|
| 18 |
-
isComponentMounted.current = true;
|
| 19 |
-
|
| 20 |
-
const loadModel = async () => {
|
| 21 |
-
try {
|
| 22 |
-
// Load COCO-SSD model as a base
|
| 23 |
-
// In production, you'd want to use a custom card detection model
|
| 24 |
-
const loadedModel = await cocossd.load({
|
| 25 |
-
base: 'lite_mobilenet_v2',
|
| 26 |
-
modelUrl: undefined // Use default model
|
| 27 |
-
});
|
| 28 |
-
|
| 29 |
-
if (!isComponentMounted.current) return;
|
| 30 |
-
|
| 31 |
-
setModel(loadedModel);
|
| 32 |
-
console.log("Card detection model loaded successfully");
|
| 33 |
-
|
| 34 |
-
// Set first load to false after initialization
|
| 35 |
-
setTimeout(() => {
|
| 36 |
-
if (isComponentMounted.current) {
|
| 37 |
-
setIsFirstLoad(false);
|
| 38 |
-
}
|
| 39 |
-
}, 3000);
|
| 40 |
-
} catch (error) {
|
| 41 |
-
console.error("Error loading detection model:", error);
|
| 42 |
-
}
|
| 43 |
-
};
|
| 44 |
-
|
| 45 |
-
loadModel();
|
| 46 |
-
|
| 47 |
-
return () => {
|
| 48 |
-
isComponentMounted.current = false;
|
| 49 |
-
if (requestRef.current) {
|
| 50 |
-
cancelAnimationFrame(requestRef.current);
|
| 51 |
-
requestRef.current = null;
|
| 52 |
-
}
|
| 53 |
-
};
|
| 54 |
-
}, []);
|
| 55 |
-
|
| 56 |
-
// Process video frames and detect cards
|
| 57 |
-
useEffect(() => {
|
| 58 |
-
if (!model || !videoRef.current || !canvasRef.current) return;
|
| 59 |
-
|
| 60 |
-
const video = videoRef.current;
|
| 61 |
-
const canvas = canvasRef.current;
|
| 62 |
-
const ctx = canvas.getContext('2d');
|
| 63 |
-
|
| 64 |
-
const detectCards = async (now) => {
|
| 65 |
-
if (!isComponentMounted.current) return;
|
| 66 |
-
|
| 67 |
-
if (video.readyState < 2) {
|
| 68 |
-
requestRef.current = requestAnimationFrame(detectCards);
|
| 69 |
-
return;
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
// Only run detection every 200ms for performance
|
| 73 |
-
if (now - lastDetectionTimeRef.current > 200) {
|
| 74 |
-
lastDetectionTimeRef.current = now;
|
| 75 |
-
|
| 76 |
-
try {
|
| 77 |
-
// Detect objects in the video frame
|
| 78 |
-
const predictions = await model.detect(video);
|
| 79 |
-
|
| 80 |
-
// Clear the canvas
|
| 81 |
-
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
| 82 |
-
|
| 83 |
-
// Draw the video frame
|
| 84 |
-
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
|
| 85 |
-
|
| 86 |
-
// Filter for card-like objects
|
| 87 |
-
// In a real implementation, you'd have a model trained specifically for cards
|
| 88 |
-
const cardPredictions = predictions.filter(prediction => {
|
| 89 |
-
// This is a placeholder - in reality, you'd detect actual playing cards
|
| 90 |
-
// For demo purposes, we'll look for rectangular objects
|
| 91 |
-
const aspectRatio = prediction.bbox[2] / prediction.bbox[3];
|
| 92 |
-
return aspectRatio > 0.5 && aspectRatio < 0.8 &&
|
| 93 |
-
prediction.score > 0.5;
|
| 94 |
-
});
|
| 95 |
-
|
| 96 |
-
// Draw bounding boxes for detected cards
|
| 97 |
-
ctx.strokeStyle = '#00FF00';
|
| 98 |
-
ctx.lineWidth = 3;
|
| 99 |
-
ctx.font = '18px Arial';
|
| 100 |
-
ctx.fillStyle = '#00FF00';
|
| 101 |
-
|
| 102 |
-
const cards = [];
|
| 103 |
-
|
| 104 |
-
cardPredictions.forEach((prediction, index) => {
|
| 105 |
-
const [x, y, width, height] = prediction.bbox;
|
| 106 |
-
|
| 107 |
-
// Draw bounding box
|
| 108 |
-
ctx.strokeRect(x, y, width, height);
|
| 109 |
-
|
| 110 |
-
// Draw label
|
| 111 |
-
const label = `Card ${index + 1} (${Math.round(prediction.score * 100)}%)`;
|
| 112 |
-
ctx.fillText(label, x, y > 20 ? y - 5 : y + height + 20);
|
| 113 |
-
|
| 114 |
-
// Store card information
|
| 115 |
-
cards.push({
|
| 116 |
-
id: index,
|
| 117 |
-
bbox: prediction.bbox,
|
| 118 |
-
confidence: prediction.score,
|
| 119 |
-
center: {
|
| 120 |
-
x: x + width / 2,
|
| 121 |
-
y: y + height / 2
|
| 122 |
-
}
|
| 123 |
-
});
|
| 124 |
-
});
|
| 125 |
-
|
| 126 |
-
// Update state
|
| 127 |
-
setCardDetected(cards.length > 0);
|
| 128 |
-
setDetectedCards(cards);
|
| 129 |
-
setCardCount(cards.length);
|
| 130 |
-
|
| 131 |
-
} catch (error) {
|
| 132 |
-
console.error("Detection error:", error);
|
| 133 |
-
}
|
| 134 |
-
}
|
| 135 |
-
|
| 136 |
-
requestRef.current = requestAnimationFrame(detectCards);
|
| 137 |
-
};
|
| 138 |
-
|
| 139 |
-
requestRef.current = requestAnimationFrame(detectCards);
|
| 140 |
-
|
| 141 |
-
return () => {
|
| 142 |
-
if (requestRef.current) {
|
| 143 |
-
cancelAnimationFrame(requestRef.current);
|
| 144 |
-
requestRef.current = null;
|
| 145 |
-
}
|
| 146 |
-
};
|
| 147 |
-
}, [model, videoRef, canvasRef]);
|
| 148 |
-
|
| 149 |
-
// Custom card classification function (placeholder)
|
| 150 |
-
const classifyCard = async (imageData) => {
|
| 151 |
-
// In a real implementation, this would:
|
| 152 |
-
// 1. Extract the card region from the image
|
| 153 |
-
// 2. Run it through a card classification model
|
| 154 |
-
// 3. Return the suit and rank
|
| 155 |
-
return {
|
| 156 |
-
suit: 'unknown',
|
| 157 |
-
rank: 'unknown',
|
| 158 |
-
confidence: 0
|
| 159 |
-
};
|
| 160 |
-
};
|
| 161 |
-
|
| 162 |
-
// Function to analyze card patterns
|
| 163 |
-
const analyzeCardPattern = (cards) => {
|
| 164 |
-
// Analyze spatial arrangement of cards
|
| 165 |
-
if (cards.length === 0) return null;
|
| 166 |
-
|
| 167 |
-
// Sort cards by x position (left to right)
|
| 168 |
-
const sortedCards = [...cards].sort((a, b) => a.center.x - b.center.x);
|
| 169 |
-
|
| 170 |
-
// Calculate spread and alignment
|
| 171 |
-
const spread = cards.length > 1 ?
|
| 172 |
-
sortedCards[sortedCards.length - 1].center.x - sortedCards[0].center.x : 0;
|
| 173 |
-
|
| 174 |
-
const avgY = cards.reduce((sum, card) => sum + card.center.y, 0) / cards.length;
|
| 175 |
-
const alignment = cards.every(card => Math.abs(card.center.y - avgY) < 50) ? 'horizontal' : 'scattered';
|
| 176 |
-
|
| 177 |
-
return {
|
| 178 |
-
count: cards.length,
|
| 179 |
-
spread,
|
| 180 |
-
alignment,
|
| 181 |
-
sortedCards
|
| 182 |
-
};
|
| 183 |
-
};
|
| 184 |
-
|
| 185 |
-
return {
|
| 186 |
-
cardDetected,
|
| 187 |
-
detectedCards,
|
| 188 |
-
cardCount,
|
| 189 |
-
isFirstLoad,
|
| 190 |
-
isComponentMounted,
|
| 191 |
-
classifyCard,
|
| 192 |
-
analyzeCardPattern,
|
| 193 |
-
cardPattern: analyzeCardPattern(detectedCards)
|
| 194 |
-
};
|
| 195 |
-
};
|
| 196 |
-
|
| 197 |
-
export default useCardDetection;
|
| 198 |
-
|
| 199 |
-
// Utility functions for card detection
|
| 200 |
-
export const drawCardBoundingBox = (ctx, card, color = '#00FF00') => {
|
| 201 |
-
const [x, y, width, height] = card.bbox;
|
| 202 |
-
|
| 203 |
-
ctx.strokeStyle = color;
|
| 204 |
-
ctx.lineWidth = 2;
|
| 205 |
-
ctx.strokeRect(x, y, width, height);
|
| 206 |
-
|
| 207 |
-
// Draw corner markers
|
| 208 |
-
const cornerLength = 20;
|
| 209 |
-
ctx.lineWidth = 3;
|
| 210 |
-
|
| 211 |
-
// Top-left corner
|
| 212 |
-
ctx.beginPath();
|
| 213 |
-
ctx.moveTo(x, y + cornerLength);
|
| 214 |
-
ctx.lineTo(x, y);
|
| 215 |
-
ctx.lineTo(x + cornerLength, y);
|
| 216 |
-
ctx.stroke();
|
| 217 |
-
|
| 218 |
-
// Top-right corner
|
| 219 |
-
ctx.beginPath();
|
| 220 |
-
ctx.moveTo(x + width - cornerLength, y);
|
| 221 |
-
ctx.lineTo(x + width, y);
|
| 222 |
-
ctx.lineTo(x + width, y + cornerLength);
|
| 223 |
-
ctx.stroke();
|
| 224 |
-
|
| 225 |
-
// Bottom-left corner
|
| 226 |
-
ctx.beginPath();
|
| 227 |
-
ctx.moveTo(x, y + height - cornerLength);
|
| 228 |
-
ctx.lineTo(x, y + height);
|
| 229 |
-
ctx.lineTo(x + cornerLength, y + height);
|
| 230 |
-
ctx.stroke();
|
| 231 |
-
|
| 232 |
-
// Bottom-right corner
|
| 233 |
-
ctx.beginPath();
|
| 234 |
-
ctx.moveTo(x + width - cornerLength, y + height);
|
| 235 |
-
ctx.lineTo(x + width, y + height);
|
| 236 |
-
ctx.lineTo(x + width, y + height - cornerLength);
|
| 237 |
-
ctx.stroke();
|
| 238 |
-
};
|
| 239 |
-
|
| 240 |
-
// Card suit and rank detection utilities
|
| 241 |
-
export const CARD_SUITS = ['hearts', 'diamonds', 'clubs', 'spades'];
|
| 242 |
-
export const CARD_RANKS = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'];
|
| 243 |
-
|
| 244 |
-
// Placeholder for custom card model predictions
|
| 245 |
-
export const predictCardValue = async (model, imageData) => {
|
| 246 |
-
// This would use a trained model to predict card suit and rank
|
| 247 |
-
// For now, return a placeholder
|
| 248 |
-
return {
|
| 249 |
-
suit: CARD_SUITS[Math.floor(Math.random() * 4)],
|
| 250 |
-
rank: CARD_RANKS[Math.floor(Math.random() * 13)],
|
| 251 |
-
confidence: Math.random()
|
| 252 |
-
};
|
| 253 |
-
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|