Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,13 +47,14 @@ from transformers import SiglipImageProcessor, SiglipVisionModel
|
|
| 47 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
| 48 |
from diffusers_helper.bucket_tools import find_nearest_bucket
|
| 49 |
|
| 50 |
-
|
| 51 |
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
| 52 |
high_vram = free_mem_gb > 60
|
| 53 |
|
| 54 |
print(f'Free VRAM {free_mem_gb} GB')
|
| 55 |
print(f'High-VRAM Mode: {high_vram}')
|
| 56 |
|
|
|
|
| 57 |
text_encoder = LlamaModel.from_pretrained(
|
| 58 |
"hunyuanvideo-community/HunyuanVideo",
|
| 59 |
subfolder='text_encoder',
|
|
@@ -93,12 +94,14 @@ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
|
| 93 |
torch_dtype=torch.bfloat16
|
| 94 |
).cpu()
|
| 95 |
|
|
|
|
| 96 |
vae.eval()
|
| 97 |
text_encoder.eval()
|
| 98 |
text_encoder_2.eval()
|
| 99 |
image_encoder.eval()
|
| 100 |
transformer.eval()
|
| 101 |
|
|
|
|
| 102 |
if not high_vram:
|
| 103 |
vae.enable_slicing()
|
| 104 |
vae.enable_tiling()
|
|
@@ -106,20 +109,22 @@ if not high_vram:
|
|
| 106 |
transformer.high_quality_fp32_output_for_inference = True
|
| 107 |
print('transformer.high_quality_fp32_output_for_inference = True')
|
| 108 |
|
|
|
|
| 109 |
transformer.to(dtype=torch.bfloat16)
|
| 110 |
vae.to(dtype=torch.float16)
|
| 111 |
image_encoder.to(dtype=torch.float16)
|
| 112 |
text_encoder.to(dtype=torch.float16)
|
| 113 |
text_encoder_2.to(dtype=torch.float16)
|
| 114 |
|
|
|
|
| 115 |
vae.requires_grad_(False)
|
| 116 |
text_encoder.requires_grad_(False)
|
| 117 |
text_encoder_2.requires_grad_(False)
|
| 118 |
image_encoder.requires_grad_(False)
|
| 119 |
transformer.requires_grad_(False)
|
| 120 |
|
|
|
|
| 121 |
if not high_vram:
|
| 122 |
-
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
| 123 |
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
| 124 |
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
| 125 |
else:
|
|
@@ -140,6 +145,7 @@ examples = [
|
|
| 140 |
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
|
| 141 |
]
|
| 142 |
|
|
|
|
| 143 |
def generate_examples(input_image, prompt):
|
| 144 |
t2v=False
|
| 145 |
n_prompt=""
|
|
@@ -192,7 +198,8 @@ def generate_examples(input_image, prompt):
|
|
| 192 |
yield (
|
| 193 |
gr.update(),
|
| 194 |
gr.update(visible=True, value=preview),
|
| 195 |
-
desc,
|
|
|
|
| 196 |
gr.update(interactive=False),
|
| 197 |
gr.update(interactive=True)
|
| 198 |
)
|
|
@@ -211,98 +218,69 @@ def generate_examples(input_image, prompt):
|
|
| 211 |
@torch.no_grad()
|
| 212 |
def worker(
|
| 213 |
input_image, prompt, n_prompt, seed,
|
| 214 |
-
total_second_length, latent_window_size,
|
| 215 |
-
|
| 216 |
-
gpu_memory_preservation, use_teacache, mp4_crf
|
| 217 |
):
|
|
|
|
| 218 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
| 219 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
| 220 |
|
| 221 |
job_id = generate_timestamp()
|
| 222 |
|
| 223 |
-
stream.output_queue.push(
|
| 224 |
-
('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))
|
| 225 |
-
)
|
| 226 |
|
| 227 |
try:
|
| 228 |
-
#
|
| 229 |
if not high_vram:
|
| 230 |
unload_complete_models(
|
| 231 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
| 232 |
)
|
| 233 |
|
| 234 |
# Text encoding
|
| 235 |
-
stream.output_queue.push(
|
| 236 |
-
('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))
|
| 237 |
-
)
|
| 238 |
|
| 239 |
if not high_vram:
|
| 240 |
fake_diffusers_current_device(text_encoder, gpu)
|
| 241 |
load_model_as_complete(text_encoder_2, target_device=gpu)
|
| 242 |
|
| 243 |
-
llama_vec, clip_l_pooler = encode_prompt_conds(
|
| 244 |
-
prompt, text_encoder, text_encoder_2,
|
| 245 |
-
tokenizer, tokenizer_2
|
| 246 |
-
)
|
| 247 |
|
| 248 |
if cfg == 1:
|
| 249 |
-
llama_vec_n, clip_l_pooler_n = (
|
| 250 |
-
torch.zeros_like(llama_vec),
|
| 251 |
-
torch.zeros_like(clip_l_pooler)
|
| 252 |
-
)
|
| 253 |
else:
|
| 254 |
-
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
|
| 255 |
-
n_prompt, text_encoder, text_encoder_2,
|
| 256 |
-
tokenizer, tokenizer_2
|
| 257 |
-
)
|
| 258 |
|
| 259 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
| 260 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
| 261 |
|
| 262 |
-
#
|
| 263 |
-
stream.output_queue.push(
|
| 264 |
-
('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))
|
| 265 |
-
)
|
| 266 |
|
| 267 |
H, W, C = input_image.shape
|
| 268 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
| 269 |
-
input_image_np = resize_and_center_crop(
|
| 270 |
-
input_image,
|
| 271 |
-
target_width=width,
|
| 272 |
-
target_height=height
|
| 273 |
-
)
|
| 274 |
|
| 275 |
-
Image.fromarray(input_image_np).save(
|
| 276 |
-
os.path.join(outputs_folder, f'{job_id}.png')
|
| 277 |
-
)
|
| 278 |
|
| 279 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
| 280 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
| 281 |
|
| 282 |
# VAE encoding
|
| 283 |
-
stream.output_queue.push(
|
| 284 |
-
('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))
|
| 285 |
-
)
|
| 286 |
|
| 287 |
if not high_vram:
|
| 288 |
load_model_as_complete(vae, target_device=gpu)
|
| 289 |
-
|
| 290 |
start_latent = vae_encode(input_image_pt, vae)
|
| 291 |
|
| 292 |
# CLIP Vision
|
| 293 |
-
stream.output_queue.push(
|
| 294 |
-
('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))
|
| 295 |
-
)
|
| 296 |
|
| 297 |
if not high_vram:
|
| 298 |
load_model_as_complete(image_encoder, target_device=gpu)
|
| 299 |
-
|
| 300 |
-
image_encoder_output = hf_clip_vision_encode(
|
| 301 |
-
input_image_np, feature_extractor, image_encoder
|
| 302 |
-
)
|
| 303 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
| 304 |
|
| 305 |
-
#
|
| 306 |
llama_vec = llama_vec.to(transformer.dtype)
|
| 307 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
| 308 |
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
|
@@ -310,9 +288,7 @@ def worker(
|
|
| 310 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
| 311 |
|
| 312 |
# Start sampling
|
| 313 |
-
stream.output_queue.push(
|
| 314 |
-
('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))
|
| 315 |
-
)
|
| 316 |
|
| 317 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
| 318 |
|
|
@@ -322,10 +298,8 @@ def worker(
|
|
| 322 |
).cpu()
|
| 323 |
history_pixels = None
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
dim=2
|
| 328 |
-
)
|
| 329 |
total_generated_latent_frames = 1
|
| 330 |
|
| 331 |
for section_index in range(total_latent_sections):
|
|
@@ -351,10 +325,7 @@ def worker(
|
|
| 351 |
preview = d['denoised']
|
| 352 |
preview = vae_decode_fake(preview)
|
| 353 |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 354 |
-
preview = einops.rearrange(
|
| 355 |
-
preview,
|
| 356 |
-
'b c t h w -> (b h) (t w) c'
|
| 357 |
-
)
|
| 358 |
|
| 359 |
if stream.input_queue.top() == 'end':
|
| 360 |
stream.output_queue.push(('end', None))
|
|
@@ -363,15 +334,12 @@ def worker(
|
|
| 363 |
current_step = d['i'] + 1
|
| 364 |
percentage = int(100.0 * current_step / steps)
|
| 365 |
hint = f'Sampling {current_step}/{steps}'
|
| 366 |
-
desc = f'
|
| 367 |
-
stream.output_queue.push(
|
| 368 |
-
('progress', (preview, desc, make_progress_bar_html(percentage, hint)))
|
| 369 |
-
)
|
| 370 |
return
|
| 371 |
|
| 372 |
indices = torch.arange(
|
| 373 |
-
0,
|
| 374 |
-
sum([1, 16, 2, 1, latent_window_size])
|
| 375 |
).unsqueeze(0)
|
| 376 |
(
|
| 377 |
clean_latent_indices_start,
|
|
@@ -380,14 +348,13 @@ def worker(
|
|
| 380 |
clean_latent_1x_indices,
|
| 381 |
latent_indices
|
| 382 |
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
dim=1
|
| 386 |
-
)
|
| 387 |
|
| 388 |
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
|
| 389 |
:, :, -sum([16, 2, 1]):, :, :
|
| 390 |
].split([16, 2, 1], dim=2)
|
|
|
|
| 391 |
clean_latents = torch.cat(
|
| 392 |
[start_latent.to(history_latents), clean_latents_1x],
|
| 393 |
dim=2
|
|
@@ -424,21 +391,13 @@ def worker(
|
|
| 424 |
)
|
| 425 |
|
| 426 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
| 427 |
-
history_latents = torch.cat(
|
| 428 |
-
[history_latents, generated_latents.to(history_latents)],
|
| 429 |
-
dim=2
|
| 430 |
-
)
|
| 431 |
|
| 432 |
if not high_vram:
|
| 433 |
-
offload_model_from_device_for_memory_preservation(
|
| 434 |
-
transformer, target_device=gpu,
|
| 435 |
-
preserved_memory_gb=8
|
| 436 |
-
)
|
| 437 |
load_model_as_complete(vae, target_device=gpu)
|
| 438 |
|
| 439 |
-
real_history_latents = history_latents[
|
| 440 |
-
:, :, -total_generated_latent_frames:, :, :
|
| 441 |
-
]
|
| 442 |
|
| 443 |
if history_pixels is None:
|
| 444 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
|
@@ -456,75 +415,55 @@ def worker(
|
|
| 456 |
if not high_vram:
|
| 457 |
unload_complete_models()
|
| 458 |
|
| 459 |
-
output_filename = os.path.join(
|
| 460 |
-
|
| 461 |
-
)
|
| 462 |
-
|
| 463 |
-
save_bcthw_as_mp4(
|
| 464 |
-
history_pixels, output_filename,
|
| 465 |
-
fps=30, crf=mp4_crf
|
| 466 |
-
)
|
| 467 |
|
| 468 |
-
print(
|
| 469 |
-
f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}'
|
| 470 |
-
)
|
| 471 |
|
| 472 |
stream.output_queue.push(('file', output_filename))
|
| 473 |
|
| 474 |
except:
|
| 475 |
traceback.print_exc()
|
| 476 |
if not high_vram:
|
| 477 |
-
unload_complete_models(
|
| 478 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
| 479 |
-
)
|
| 480 |
|
| 481 |
stream.output_queue.push(('end', None))
|
| 482 |
return
|
| 483 |
|
| 484 |
def get_duration(
|
| 485 |
-
input_image, prompt, t2v, n_prompt,
|
| 486 |
-
total_second_length, latent_window_size,
|
| 487 |
-
cfg, gs, rs, gpu_memory_preservation,
|
|
|
|
| 488 |
):
|
| 489 |
return total_second_length * 60
|
| 490 |
|
| 491 |
@spaces.GPU(duration=get_duration)
|
| 492 |
def process(
|
| 493 |
-
input_image, prompt, t2v=False, n_prompt="",
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
):
|
| 498 |
global stream
|
| 499 |
-
|
| 500 |
if t2v:
|
| 501 |
default_height, default_width = 640, 640
|
| 502 |
-
input_image = np.ones(
|
| 503 |
-
(default_height, default_width, 3),
|
| 504 |
-
dtype=np.uint8
|
| 505 |
-
) * 255
|
| 506 |
print("No input image provided. Using a blank white image.")
|
| 507 |
else:
|
| 508 |
-
# ImageEditor에서 받은 composite RGBA를 분리
|
| 509 |
composite_rgba_uint8 = input_image["composite"]
|
| 510 |
|
| 511 |
-
# rgb_uint8: (H,W,3)
|
| 512 |
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
| 513 |
-
# mask_uint8: (H,W)
|
| 514 |
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
| 515 |
|
| 516 |
-
# 흰색 배경
|
| 517 |
h, w = rgb_uint8.shape[:2]
|
| 518 |
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
| 519 |
|
| 520 |
-
# 알파 노멀라이즈
|
| 521 |
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
| 522 |
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
|
| 523 |
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
| 527 |
-
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
| 528 |
|
| 529 |
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
| 530 |
|
|
@@ -559,7 +498,8 @@ def process(
|
|
| 559 |
yield (
|
| 560 |
gr.update(),
|
| 561 |
gr.update(visible=True, value=preview),
|
| 562 |
-
desc,
|
|
|
|
| 563 |
gr.update(interactive=False),
|
| 564 |
gr.update(interactive=True)
|
| 565 |
)
|
|
@@ -578,16 +518,16 @@ def process(
|
|
| 578 |
def end_process():
|
| 579 |
stream.input_queue.push('end')
|
| 580 |
|
|
|
|
| 581 |
quick_prompts = [
|
| 582 |
'The girl dances gracefully, with clear movements, full of charm.',
|
| 583 |
'A character doing some simple body movements.'
|
| 584 |
]
|
| 585 |
quick_prompts = [[x] for x in quick_prompts]
|
| 586 |
|
| 587 |
-
|
| 588 |
def make_custom_css():
|
| 589 |
base_progress_css = make_progress_bar_css()
|
| 590 |
-
# 아래는 예시로 약간 더 파스텔 톤의 스타일 및 카드형 UI
|
| 591 |
extra_css = """
|
| 592 |
body {
|
| 593 |
background: #fafbfe !important;
|
|
@@ -595,14 +535,14 @@ def make_custom_css():
|
|
| 595 |
}
|
| 596 |
#title-container {
|
| 597 |
text-align: center;
|
| 598 |
-
padding:
|
| 599 |
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
|
| 600 |
-
border-radius: 0 0
|
| 601 |
margin-bottom: 20px;
|
| 602 |
}
|
| 603 |
#title-container h1 {
|
| 604 |
color: white;
|
| 605 |
-
font-size:
|
| 606 |
margin: 0;
|
| 607 |
font-weight: 800;
|
| 608 |
text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
|
|
@@ -650,35 +590,30 @@ css = make_custom_css()
|
|
| 650 |
|
| 651 |
block = gr.Blocks(css=css).queue()
|
| 652 |
with block:
|
| 653 |
-
#
|
| 654 |
-
with gr.
|
| 655 |
gr.Markdown("<h1>FramePack I2V</h1>")
|
| 656 |
|
| 657 |
-
# 설명 부분
|
| 658 |
gr.Markdown("""
|
| 659 |
### Video diffusion, but feels like image diffusion
|
| 660 |
-
FramePack I2V - a model that predicts future frames from
|
| 661 |
-
|
| 662 |
-
***beta FramePack Fill*** - You can also paint over the input image to inpaint the video output.
|
| 663 |
""")
|
| 664 |
|
| 665 |
with gr.Row():
|
| 666 |
with gr.Column():
|
| 667 |
input_image = gr.ImageEditor(
|
| 668 |
type="numpy",
|
| 669 |
-
label="Image (
|
| 670 |
height=320,
|
| 671 |
brush=gr.Brush(colors=["#ffffff"])
|
| 672 |
)
|
| 673 |
prompt = gr.Textbox(label="Prompt", value='')
|
|
|
|
| 674 |
|
| 675 |
-
t2v = gr.Checkbox(
|
| 676 |
-
label="Generate from Text Only (no image)?",
|
| 677 |
-
value=False
|
| 678 |
-
)
|
| 679 |
example_quick_prompts = gr.Dataset(
|
| 680 |
samples=quick_prompts,
|
| 681 |
-
label="Quick
|
| 682 |
samples_per_page=1000,
|
| 683 |
components=[prompt]
|
| 684 |
)
|
|
@@ -695,7 +630,7 @@ with block:
|
|
| 695 |
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)
|
| 696 |
|
| 697 |
total_second_length = gr.Slider(
|
| 698 |
-
label="Total Video Length (
|
| 699 |
minimum=1,
|
| 700 |
maximum=5,
|
| 701 |
value=2,
|
|
@@ -707,87 +642,81 @@ with block:
|
|
| 707 |
use_teacache = gr.Checkbox(
|
| 708 |
label='Use TeaCache',
|
| 709 |
value=True,
|
| 710 |
-
info='Faster speed but
|
| 711 |
)
|
| 712 |
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
| 713 |
seed = gr.Number(label="Seed", value=31337, precision=0)
|
| 714 |
-
|
| 715 |
latent_window_size = gr.Slider(
|
| 716 |
label="Latent Window Size",
|
| 717 |
-
minimum=1,
|
| 718 |
-
|
| 719 |
-
value=9,
|
| 720 |
-
step=1,
|
| 721 |
visible=False
|
| 722 |
)
|
| 723 |
steps = gr.Slider(
|
| 724 |
label="Steps",
|
| 725 |
-
minimum=1,
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
step=1,
|
| 729 |
-
info='Not recommended to change significantly.'
|
| 730 |
)
|
| 731 |
cfg = gr.Slider(
|
| 732 |
label="CFG Scale",
|
| 733 |
-
minimum=1.0,
|
| 734 |
-
|
| 735 |
-
value=1.0,
|
| 736 |
-
step=0.01,
|
| 737 |
visible=False
|
| 738 |
)
|
| 739 |
gs = gr.Slider(
|
| 740 |
label="Distilled CFG Scale",
|
| 741 |
-
minimum=1.0,
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
step=0.01,
|
| 745 |
-
info='Not recommended to change significantly.'
|
| 746 |
)
|
| 747 |
rs = gr.Slider(
|
| 748 |
label="CFG Re-Scale",
|
| 749 |
-
minimum=0.0,
|
| 750 |
-
|
| 751 |
-
value=0.0,
|
| 752 |
-
step=0.01,
|
| 753 |
visible=False
|
| 754 |
)
|
| 755 |
gpu_memory_preservation = gr.Slider(
|
| 756 |
label="GPU Memory Preservation (GB)",
|
| 757 |
-
minimum=6,
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
step=0.1,
|
| 761 |
-
info="Increase if OOM occurs (slower speed)."
|
| 762 |
)
|
| 763 |
mp4_crf = gr.Slider(
|
| 764 |
label="MP4 Compression (CRF)",
|
| 765 |
-
minimum=0,
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
step=1,
|
| 769 |
-
info="Lower is higher quality. 16 is recommended."
|
| 770 |
)
|
| 771 |
|
| 772 |
with gr.Column():
|
| 773 |
-
preview_image = gr.Image(
|
| 774 |
-
|
| 775 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 776 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
| 777 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
| 778 |
|
|
|
|
| 779 |
gr.HTML("""
|
| 780 |
<div style="text-align:center; margin-top:20px;">
|
| 781 |
-
|
| 782 |
-
|
| 783 |
</div>
|
| 784 |
""")
|
| 785 |
|
| 786 |
-
# 함수 연결
|
| 787 |
ips = [
|
| 788 |
input_image, prompt, t2v, n_prompt, seed,
|
| 789 |
-
total_second_length, latent_window_size,
|
| 790 |
-
cfg, gs, rs, gpu_memory_preservation,
|
| 791 |
use_teacache, mp4_crf
|
| 792 |
]
|
| 793 |
start_button.click(
|
|
@@ -797,7 +726,7 @@ with block:
|
|
| 797 |
)
|
| 798 |
end_button.click(fn=end_process)
|
| 799 |
|
| 800 |
-
#
|
| 801 |
# gr.Examples(
|
| 802 |
# examples=examples,
|
| 803 |
# inputs=[input_image, prompt],
|
|
|
|
| 47 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
| 48 |
from diffusers_helper.bucket_tools import find_nearest_bucket
|
| 49 |
|
| 50 |
+
# Check GPU memory
|
| 51 |
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
| 52 |
high_vram = free_mem_gb > 60
|
| 53 |
|
| 54 |
print(f'Free VRAM {free_mem_gb} GB')
|
| 55 |
print(f'High-VRAM Mode: {high_vram}')
|
| 56 |
|
| 57 |
+
# Load models
|
| 58 |
text_encoder = LlamaModel.from_pretrained(
|
| 59 |
"hunyuanvideo-community/HunyuanVideo",
|
| 60 |
subfolder='text_encoder',
|
|
|
|
| 94 |
torch_dtype=torch.bfloat16
|
| 95 |
).cpu()
|
| 96 |
|
| 97 |
+
# Evaluation mode
|
| 98 |
vae.eval()
|
| 99 |
text_encoder.eval()
|
| 100 |
text_encoder_2.eval()
|
| 101 |
image_encoder.eval()
|
| 102 |
transformer.eval()
|
| 103 |
|
| 104 |
+
# Slicing/Tiling for low VRAM
|
| 105 |
if not high_vram:
|
| 106 |
vae.enable_slicing()
|
| 107 |
vae.enable_tiling()
|
|
|
|
| 109 |
transformer.high_quality_fp32_output_for_inference = True
|
| 110 |
print('transformer.high_quality_fp32_output_for_inference = True')
|
| 111 |
|
| 112 |
+
# Move to correct dtype
|
| 113 |
transformer.to(dtype=torch.bfloat16)
|
| 114 |
vae.to(dtype=torch.float16)
|
| 115 |
image_encoder.to(dtype=torch.float16)
|
| 116 |
text_encoder.to(dtype=torch.float16)
|
| 117 |
text_encoder_2.to(dtype=torch.float16)
|
| 118 |
|
| 119 |
+
# No gradient
|
| 120 |
vae.requires_grad_(False)
|
| 121 |
text_encoder.requires_grad_(False)
|
| 122 |
text_encoder_2.requires_grad_(False)
|
| 123 |
image_encoder.requires_grad_(False)
|
| 124 |
transformer.requires_grad_(False)
|
| 125 |
|
| 126 |
+
# DynamicSwap if low VRAM
|
| 127 |
if not high_vram:
|
|
|
|
| 128 |
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
| 129 |
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
| 130 |
else:
|
|
|
|
| 145 |
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
|
| 146 |
]
|
| 147 |
|
| 148 |
+
# Example generation (optional)
|
| 149 |
def generate_examples(input_image, prompt):
|
| 150 |
t2v=False
|
| 151 |
n_prompt=""
|
|
|
|
| 198 |
yield (
|
| 199 |
gr.update(),
|
| 200 |
gr.update(visible=True, value=preview),
|
| 201 |
+
desc,
|
| 202 |
+
html,
|
| 203 |
gr.update(interactive=False),
|
| 204 |
gr.update(interactive=True)
|
| 205 |
)
|
|
|
|
| 218 |
@torch.no_grad()
|
| 219 |
def worker(
|
| 220 |
input_image, prompt, n_prompt, seed,
|
| 221 |
+
total_second_length, latent_window_size, steps,
|
| 222 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
|
|
|
|
| 223 |
):
|
| 224 |
+
# Calculate total sections
|
| 225 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
| 226 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
| 227 |
|
| 228 |
job_id = generate_timestamp()
|
| 229 |
|
| 230 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
|
|
|
|
|
|
| 231 |
|
| 232 |
try:
|
| 233 |
+
# Unload if VRAM is low
|
| 234 |
if not high_vram:
|
| 235 |
unload_complete_models(
|
| 236 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
| 237 |
)
|
| 238 |
|
| 239 |
# Text encoding
|
| 240 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
|
|
|
|
|
|
| 241 |
|
| 242 |
if not high_vram:
|
| 243 |
fake_diffusers_current_device(text_encoder, gpu)
|
| 244 |
load_model_as_complete(text_encoder_2, target_device=gpu)
|
| 245 |
|
| 246 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
if cfg == 1:
|
| 249 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
|
|
|
|
|
|
|
|
|
| 250 |
else:
|
| 251 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
| 254 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
| 255 |
|
| 256 |
+
# Process image
|
| 257 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
|
|
|
|
|
|
| 258 |
|
| 259 |
H, W, C = input_image.shape
|
| 260 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
| 261 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
|
|
|
|
|
|
| 264 |
|
| 265 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
| 266 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
| 267 |
|
| 268 |
# VAE encoding
|
| 269 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
|
|
|
|
|
|
| 270 |
|
| 271 |
if not high_vram:
|
| 272 |
load_model_as_complete(vae, target_device=gpu)
|
|
|
|
| 273 |
start_latent = vae_encode(input_image_pt, vae)
|
| 274 |
|
| 275 |
# CLIP Vision
|
| 276 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
|
|
|
|
|
|
| 277 |
|
| 278 |
if not high_vram:
|
| 279 |
load_model_as_complete(image_encoder, target_device=gpu)
|
| 280 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
|
|
|
|
|
|
|
|
|
| 281 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
| 282 |
|
| 283 |
+
# Convert dtype
|
| 284 |
llama_vec = llama_vec.to(transformer.dtype)
|
| 285 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
| 286 |
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
|
|
|
| 288 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
| 289 |
|
| 290 |
# Start sampling
|
| 291 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
|
|
|
|
|
|
| 292 |
|
| 293 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
| 294 |
|
|
|
|
| 298 |
).cpu()
|
| 299 |
history_pixels = None
|
| 300 |
|
| 301 |
+
# Add start_latent
|
| 302 |
+
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
|
|
|
|
|
|
| 303 |
total_generated_latent_frames = 1
|
| 304 |
|
| 305 |
for section_index in range(total_latent_sections):
|
|
|
|
| 325 |
preview = d['denoised']
|
| 326 |
preview = vae_decode_fake(preview)
|
| 327 |
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 328 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
if stream.input_queue.top() == 'end':
|
| 331 |
stream.output_queue.push(('end', None))
|
|
|
|
| 334 |
current_step = d['i'] + 1
|
| 335 |
percentage = int(100.0 * current_step / steps)
|
| 336 |
hint = f'Sampling {current_step}/{steps}'
|
| 337 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
|
| 338 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
|
|
|
|
|
|
| 339 |
return
|
| 340 |
|
| 341 |
indices = torch.arange(
|
| 342 |
+
0, sum([1, 16, 2, 1, latent_window_size])
|
|
|
|
| 343 |
).unsqueeze(0)
|
| 344 |
(
|
| 345 |
clean_latent_indices_start,
|
|
|
|
| 348 |
clean_latent_1x_indices,
|
| 349 |
latent_indices
|
| 350 |
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
| 351 |
+
|
| 352 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
|
|
|
|
|
|
| 353 |
|
| 354 |
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
|
| 355 |
:, :, -sum([16, 2, 1]):, :, :
|
| 356 |
].split([16, 2, 1], dim=2)
|
| 357 |
+
|
| 358 |
clean_latents = torch.cat(
|
| 359 |
[start_latent.to(history_latents), clean_latents_1x],
|
| 360 |
dim=2
|
|
|
|
| 391 |
)
|
| 392 |
|
| 393 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
| 394 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
if not high_vram:
|
| 397 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
|
|
|
|
|
|
|
|
|
| 398 |
load_model_as_complete(vae, target_device=gpu)
|
| 399 |
|
| 400 |
+
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
|
|
|
|
|
|
| 401 |
|
| 402 |
if history_pixels is None:
|
| 403 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
|
|
|
| 415 |
if not high_vram:
|
| 416 |
unload_complete_models()
|
| 417 |
|
| 418 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
| 419 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
+
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
|
|
|
|
|
|
| 422 |
|
| 423 |
stream.output_queue.push(('file', output_filename))
|
| 424 |
|
| 425 |
except:
|
| 426 |
traceback.print_exc()
|
| 427 |
if not high_vram:
|
| 428 |
+
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
|
|
|
|
|
|
|
| 429 |
|
| 430 |
stream.output_queue.push(('end', None))
|
| 431 |
return
|
| 432 |
|
| 433 |
def get_duration(
|
| 434 |
+
input_image, prompt, t2v, n_prompt,
|
| 435 |
+
seed, total_second_length, latent_window_size,
|
| 436 |
+
steps, cfg, gs, rs, gpu_memory_preservation,
|
| 437 |
+
use_teacache, mp4_crf
|
| 438 |
):
|
| 439 |
return total_second_length * 60
|
| 440 |
|
| 441 |
@spaces.GPU(duration=get_duration)
|
| 442 |
def process(
|
| 443 |
+
input_image, prompt, t2v=False, n_prompt="", seed=31337,
|
| 444 |
+
total_second_length=5, latent_window_size=9, steps=25,
|
| 445 |
+
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
|
| 446 |
+
use_teacache=True, mp4_crf=16
|
| 447 |
):
|
| 448 |
global stream
|
|
|
|
| 449 |
if t2v:
|
| 450 |
default_height, default_width = 640, 640
|
| 451 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
|
|
|
|
|
|
|
|
|
| 452 |
print("No input image provided. Using a blank white image.")
|
| 453 |
else:
|
|
|
|
| 454 |
composite_rgba_uint8 = input_image["composite"]
|
| 455 |
|
|
|
|
| 456 |
rgb_uint8 = composite_rgba_uint8[:, :, :3]
|
|
|
|
| 457 |
mask_uint8 = composite_rgba_uint8[:, :, 3]
|
| 458 |
|
|
|
|
| 459 |
h, w = rgb_uint8.shape[:2]
|
| 460 |
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
|
| 461 |
|
|
|
|
| 462 |
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
|
| 463 |
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
|
| 464 |
|
| 465 |
+
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
|
| 466 |
+
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
|
|
|
|
|
|
|
| 467 |
|
| 468 |
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
|
| 469 |
|
|
|
|
| 498 |
yield (
|
| 499 |
gr.update(),
|
| 500 |
gr.update(visible=True, value=preview),
|
| 501 |
+
desc,
|
| 502 |
+
html,
|
| 503 |
gr.update(interactive=False),
|
| 504 |
gr.update(interactive=True)
|
| 505 |
)
|
|
|
|
| 518 |
def end_process():
|
| 519 |
stream.input_queue.push('end')
|
| 520 |
|
| 521 |
+
|
| 522 |
quick_prompts = [
|
| 523 |
'The girl dances gracefully, with clear movements, full of charm.',
|
| 524 |
'A character doing some simple body movements.'
|
| 525 |
]
|
| 526 |
quick_prompts = [[x] for x in quick_prompts]
|
| 527 |
|
| 528 |
+
|
| 529 |
def make_custom_css():
|
| 530 |
base_progress_css = make_progress_bar_css()
|
|
|
|
| 531 |
extra_css = """
|
| 532 |
body {
|
| 533 |
background: #fafbfe !important;
|
|
|
|
| 535 |
}
|
| 536 |
#title-container {
|
| 537 |
text-align: center;
|
| 538 |
+
padding: 20px 0;
|
| 539 |
background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%);
|
| 540 |
+
border-radius: 0 0 10px 10px;
|
| 541 |
margin-bottom: 20px;
|
| 542 |
}
|
| 543 |
#title-container h1 {
|
| 544 |
color: white;
|
| 545 |
+
font-size: 2rem;
|
| 546 |
margin: 0;
|
| 547 |
font-weight: 800;
|
| 548 |
text-shadow: 1px 2px 2px rgba(0,0,0,0.1);
|
|
|
|
| 590 |
|
| 591 |
block = gr.Blocks(css=css).queue()
|
| 592 |
with block:
|
| 593 |
+
# Title (use gr.Group instead of gr.Box for older Gradio versions)
|
| 594 |
+
with gr.Group(elem_id="title-container"):
|
| 595 |
gr.Markdown("<h1>FramePack I2V</h1>")
|
| 596 |
|
|
|
|
| 597 |
gr.Markdown("""
|
| 598 |
### Video diffusion, but feels like image diffusion
|
| 599 |
+
FramePack I2V - a model that predicts future frames from past frames,
|
| 600 |
+
letting you generate short animations from a single image plus text prompt.
|
|
|
|
| 601 |
""")
|
| 602 |
|
| 603 |
with gr.Row():
|
| 604 |
with gr.Column():
|
| 605 |
input_image = gr.ImageEditor(
|
| 606 |
type="numpy",
|
| 607 |
+
label="Image Editor (use Brush for mask)",
|
| 608 |
height=320,
|
| 609 |
brush=gr.Brush(colors=["#ffffff"])
|
| 610 |
)
|
| 611 |
prompt = gr.Textbox(label="Prompt", value='')
|
| 612 |
+
t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False)
|
| 613 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 614 |
example_quick_prompts = gr.Dataset(
|
| 615 |
samples=quick_prompts,
|
| 616 |
+
label="Quick Prompts",
|
| 617 |
samples_per_page=1000,
|
| 618 |
components=[prompt]
|
| 619 |
)
|
|
|
|
| 630 |
end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False)
|
| 631 |
|
| 632 |
total_second_length = gr.Slider(
|
| 633 |
+
label="Total Video Length (Seconds)",
|
| 634 |
minimum=1,
|
| 635 |
maximum=5,
|
| 636 |
value=2,
|
|
|
|
| 642 |
use_teacache = gr.Checkbox(
|
| 643 |
label='Use TeaCache',
|
| 644 |
value=True,
|
| 645 |
+
info='Faster speed, but may worsen hands/fingers.'
|
| 646 |
)
|
| 647 |
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
| 648 |
seed = gr.Number(label="Seed", value=31337, precision=0)
|
|
|
|
| 649 |
latent_window_size = gr.Slider(
|
| 650 |
label="Latent Window Size",
|
| 651 |
+
minimum=1, maximum=33,
|
| 652 |
+
value=9, step=1,
|
|
|
|
|
|
|
| 653 |
visible=False
|
| 654 |
)
|
| 655 |
steps = gr.Slider(
|
| 656 |
label="Steps",
|
| 657 |
+
minimum=1, maximum=100,
|
| 658 |
+
value=25, step=1,
|
| 659 |
+
info='Not recommended to change drastically.'
|
|
|
|
|
|
|
| 660 |
)
|
| 661 |
cfg = gr.Slider(
|
| 662 |
label="CFG Scale",
|
| 663 |
+
minimum=1.0, maximum=32.0,
|
| 664 |
+
value=1.0, step=0.01,
|
|
|
|
|
|
|
| 665 |
visible=False
|
| 666 |
)
|
| 667 |
gs = gr.Slider(
|
| 668 |
label="Distilled CFG Scale",
|
| 669 |
+
minimum=1.0, maximum=32.0,
|
| 670 |
+
value=10.0, step=0.01,
|
| 671 |
+
info='Not recommended to change drastically.'
|
|
|
|
|
|
|
| 672 |
)
|
| 673 |
rs = gr.Slider(
|
| 674 |
label="CFG Re-Scale",
|
| 675 |
+
minimum=0.0, maximum=1.0,
|
| 676 |
+
value=0.0, step=0.01,
|
|
|
|
|
|
|
| 677 |
visible=False
|
| 678 |
)
|
| 679 |
gpu_memory_preservation = gr.Slider(
|
| 680 |
label="GPU Memory Preservation (GB)",
|
| 681 |
+
minimum=6, maximum=128,
|
| 682 |
+
value=6, step=0.1,
|
| 683 |
+
info="Increase if OOM occurs, but slower."
|
|
|
|
|
|
|
| 684 |
)
|
| 685 |
mp4_crf = gr.Slider(
|
| 686 |
label="MP4 Compression (CRF)",
|
| 687 |
+
minimum=0, maximum=100,
|
| 688 |
+
value=16, step=1,
|
| 689 |
+
info="Lower = better quality. 16 recommended."
|
|
|
|
|
|
|
| 690 |
)
|
| 691 |
|
| 692 |
with gr.Column():
|
| 693 |
+
preview_image = gr.Image(
|
| 694 |
+
label="Preview Latents",
|
| 695 |
+
height=200,
|
| 696 |
+
visible=False
|
| 697 |
+
)
|
| 698 |
+
result_video = gr.Video(
|
| 699 |
+
label="Finished Frames",
|
| 700 |
+
autoplay=True,
|
| 701 |
+
show_share_button=False,
|
| 702 |
+
height=512,
|
| 703 |
+
loop=True
|
| 704 |
+
)
|
| 705 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
| 706 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
| 707 |
|
| 708 |
+
# Extra info
|
| 709 |
gr.HTML("""
|
| 710 |
<div style="text-align:center; margin-top:20px;">
|
| 711 |
+
Share your outputs or get inspired by searching
|
| 712 |
+
<a href="https://x.com/search?q=framepack&f=live" target="_blank">#framepack</a> on Twitter!
|
| 713 |
</div>
|
| 714 |
""")
|
| 715 |
|
|
|
|
| 716 |
ips = [
|
| 717 |
input_image, prompt, t2v, n_prompt, seed,
|
| 718 |
+
total_second_length, latent_window_size,
|
| 719 |
+
steps, cfg, gs, rs, gpu_memory_preservation,
|
| 720 |
use_teacache, mp4_crf
|
| 721 |
]
|
| 722 |
start_button.click(
|
|
|
|
| 726 |
)
|
| 727 |
end_button.click(fn=end_process)
|
| 728 |
|
| 729 |
+
# If you want examples, uncomment below:
|
| 730 |
# gr.Examples(
|
| 731 |
# examples=examples,
|
| 732 |
# inputs=[input_image, prompt],
|