Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| os.environ['HF_HOME'] = os.path.abspath( | |
| os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')) | |
| ) | |
| import gradio as gr | |
| import torch | |
| import traceback | |
| import einops | |
| import safetensors.torch as sf | |
| import numpy as np | |
| import math | |
| import spaces | |
| from PIL import Image | |
| from diffusers import AutoencoderKLHunyuanVideo | |
| from transformers import ( | |
| LlamaModel, CLIPTextModel, | |
| LlamaTokenizerFast, CLIPTokenizer | |
| ) | |
| from diffusers_helper.hunyuan import ( | |
| encode_prompt_conds, vae_decode, | |
| vae_encode, vae_decode_fake | |
| ) | |
| from diffusers_helper.utils import ( | |
| save_bcthw_as_mp4, crop_or_pad_yield_mask, | |
| soft_append_bcthw, resize_and_center_crop, | |
| state_dict_weighted_merge, state_dict_offset_merge, | |
| generate_timestamp | |
| ) | |
| from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
| from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
| from diffusers_helper.memory import ( | |
| cpu, gpu, | |
| get_cuda_free_memory_gb, | |
| move_model_to_device_with_memory_preservation, | |
| offload_model_from_device_for_memory_preservation, | |
| fake_diffusers_current_device, | |
| DynamicSwapInstaller, | |
| unload_complete_models, | |
| load_model_as_complete | |
| ) | |
| from diffusers_helper.thread_utils import AsyncStream, async_run | |
| from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html | |
| from transformers import SiglipImageProcessor, SiglipVisionModel | |
| from diffusers_helper.clip_vision import hf_clip_vision_encode | |
| from diffusers_helper.bucket_tools import find_nearest_bucket | |
| # Check GPU memory | |
| free_mem_gb = get_cuda_free_memory_gb(gpu) | |
| high_vram = free_mem_gb > 60 | |
| print(f'Free VRAM {free_mem_gb} GB') | |
| print(f'High-VRAM Mode: {high_vram}') | |
| # Load models | |
| text_encoder = LlamaModel.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='text_encoder', | |
| torch_dtype=torch.float16 | |
| ).cpu() | |
| text_encoder_2 = CLIPTextModel.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='text_encoder_2', | |
| torch_dtype=torch.float16 | |
| ).cpu() | |
| tokenizer = LlamaTokenizerFast.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='tokenizer' | |
| ) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='tokenizer_2' | |
| ) | |
| vae = AutoencoderKLHunyuanVideo.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='vae', | |
| torch_dtype=torch.float16 | |
| ).cpu() | |
| feature_extractor = SiglipImageProcessor.from_pretrained( | |
| "lllyasviel/flux_redux_bfl", | |
| subfolder='feature_extractor' | |
| ) | |
| image_encoder = SiglipVisionModel.from_pretrained( | |
| "lllyasviel/flux_redux_bfl", | |
| subfolder='image_encoder', | |
| torch_dtype=torch.float16 | |
| ).cpu() | |
| transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( | |
| 'lllyasviel/FramePack_F1_I2V_HY_20250503', | |
| torch_dtype=torch.bfloat16 | |
| ).cpu() | |
| # Evaluation mode | |
| vae.eval() | |
| text_encoder.eval() | |
| text_encoder_2.eval() | |
| image_encoder.eval() | |
| transformer.eval() | |
| # Slicing/Tiling for low VRAM | |
| if not high_vram: | |
| vae.enable_slicing() | |
| vae.enable_tiling() | |
| transformer.high_quality_fp32_output_for_inference = True | |
| print('transformer.high_quality_fp32_output_for_inference = True') | |
| # Move to correct dtype | |
| transformer.to(dtype=torch.bfloat16) | |
| vae.to(dtype=torch.float16) | |
| image_encoder.to(dtype=torch.float16) | |
| text_encoder.to(dtype=torch.float16) | |
| text_encoder_2.to(dtype=torch.float16) | |
| # No gradient | |
| vae.requires_grad_(False) | |
| text_encoder.requires_grad_(False) | |
| text_encoder_2.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| transformer.requires_grad_(False) | |
| # DynamicSwap if low VRAM | |
| if not high_vram: | |
| DynamicSwapInstaller.install_model(transformer, device=gpu) | |
| DynamicSwapInstaller.install_model(text_encoder, device=gpu) | |
| else: | |
| text_encoder.to(gpu) | |
| text_encoder_2.to(gpu) | |
| image_encoder.to(gpu) | |
| vae.to(gpu) | |
| transformer.to(gpu) | |
| stream = AsyncStream() | |
| outputs_folder = './outputs/' | |
| os.makedirs(outputs_folder, exist_ok=True) | |
| examples = [ | |
| ["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."], | |
| ["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."], | |
| ["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."] | |
| ] | |
| # Example generation (optional) | |
| def generate_examples(input_image, prompt): | |
| t2v=False | |
| n_prompt="" | |
| seed=31337 | |
| total_second_length=60 | |
| latent_window_size=9 | |
| steps=25 | |
| cfg=1.0 | |
| gs=10.0 | |
| rs=0.0 | |
| gpu_memory_preservation=6 | |
| use_teacache=True | |
| mp4_crf=16 | |
| global stream | |
| if t2v: | |
| default_height, default_width = 640, 640 | |
| input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255 | |
| print("No input image provided. Using a blank white image.") | |
| yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
| stream = AsyncStream() | |
| async_run( | |
| worker, input_image, prompt, n_prompt, seed, | |
| total_second_length, latent_window_size, steps, | |
| cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
| ) | |
| output_filename = None | |
| while True: | |
| flag, data = stream.output_queue.next() | |
| if flag == 'file': | |
| output_filename = data | |
| yield ( | |
| output_filename, | |
| gr.update(), | |
| gr.update(), | |
| gr.update(), | |
| gr.update(interactive=False), | |
| gr.update(interactive=True) | |
| ) | |
| if flag == 'progress': | |
| preview, desc, html = data | |
| yield ( | |
| gr.update(), | |
| gr.update(visible=True, value=preview), | |
| desc, | |
| html, | |
| gr.update(interactive=False), | |
| gr.update(interactive=True) | |
| ) | |
| if flag == 'end': | |
| yield ( | |
| output_filename, | |
| gr.update(visible=False), | |
| gr.update(), | |
| '', | |
| gr.update(interactive=True), | |
| gr.update(interactive=False) | |
| ) | |
| break | |
| def worker( | |
| input_image, prompt, n_prompt, seed, | |
| total_second_length, latent_window_size, steps, | |
| cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
| ): | |
| # Calculate total sections | |
| total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) | |
| total_latent_sections = int(max(round(total_latent_sections), 1)) | |
| job_id = generate_timestamp() | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) | |
| try: | |
| # Unload if VRAM is low | |
| if not high_vram: | |
| unload_complete_models( | |
| text_encoder, text_encoder_2, image_encoder, vae, transformer | |
| ) | |
| # Text encoding | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) | |
| if not high_vram: | |
| fake_diffusers_current_device(text_encoder, gpu) | |
| load_model_as_complete(text_encoder_2, target_device=gpu) | |
| llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
| if cfg == 1: | |
| llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) | |
| else: | |
| llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
| llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) | |
| llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) | |
| # Process image | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) | |
| H, W, C = input_image.shape | |
| height, width = find_nearest_bucket(H, W, resolution=640) | |
| input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) | |
| Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) | |
| input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 | |
| input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] | |
| # VAE encoding | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) | |
| if not high_vram: | |
| load_model_as_complete(vae, target_device=gpu) | |
| start_latent = vae_encode(input_image_pt, vae) | |
| # CLIP Vision | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) | |
| if not high_vram: | |
| load_model_as_complete(image_encoder, target_device=gpu) | |
| image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) | |
| image_encoder_last_hidden_state = image_encoder_output.last_hidden_state | |
| # Convert dtype | |
| llama_vec = llama_vec.to(transformer.dtype) | |
| llama_vec_n = llama_vec_n.to(transformer.dtype) | |
| clip_l_pooler = clip_l_pooler.to(transformer.dtype) | |
| clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) | |
| image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) | |
| # Start sampling | |
| stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) | |
| rnd = torch.Generator("cpu").manual_seed(seed) | |
| history_latents = torch.zeros( | |
| size=(1, 16, 16 + 2 + 1, height // 8, width // 8), | |
| dtype=torch.float32 | |
| ).cpu() | |
| history_pixels = None | |
| # Add start_latent | |
| history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2) | |
| total_generated_latent_frames = 1 | |
| for section_index in range(total_latent_sections): | |
| if stream.input_queue.top() == 'end': | |
| stream.output_queue.push(('end', None)) | |
| return | |
| print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}') | |
| if not high_vram: | |
| unload_complete_models() | |
| move_model_to_device_with_memory_preservation( | |
| transformer, target_device=gpu, | |
| preserved_memory_gb=gpu_memory_preservation | |
| ) | |
| if use_teacache: | |
| transformer.initialize_teacache(enable_teacache=True, num_steps=steps) | |
| else: | |
| transformer.initialize_teacache(enable_teacache=False) | |
| def callback(d): | |
| preview = d['denoised'] | |
| preview = vae_decode_fake(preview) | |
| preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) | |
| preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') | |
| if stream.input_queue.top() == 'end': | |
| stream.output_queue.push(('end', None)) | |
| raise KeyboardInterrupt('User ends the task.') | |
| current_step = d['i'] + 1 | |
| percentage = int(100.0 * current_step / steps) | |
| hint = f'Sampling {current_step}/{steps}' | |
| desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}' | |
| stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) | |
| return | |
| indices = torch.arange( | |
| 0, sum([1, 16, 2, 1, latent_window_size]) | |
| ).unsqueeze(0) | |
| ( | |
| clean_latent_indices_start, | |
| clean_latent_4x_indices, | |
| clean_latent_2x_indices, | |
| clean_latent_1x_indices, | |
| latent_indices | |
| ) = indices.split([1, 16, 2, 1, latent_window_size], dim=1) | |
| clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1) | |
| clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[ | |
| :, :, -sum([16, 2, 1]):, :, : | |
| ].split([16, 2, 1], dim=2) | |
| clean_latents = torch.cat( | |
| [start_latent.to(history_latents), clean_latents_1x], | |
| dim=2 | |
| ) | |
| generated_latents = sample_hunyuan( | |
| transformer=transformer, | |
| sampler='unipc', | |
| width=width, | |
| height=height, | |
| frames=latent_window_size * 4 - 3, | |
| real_guidance_scale=cfg, | |
| distilled_guidance_scale=gs, | |
| guidance_rescale=rs, | |
| num_inference_steps=steps, | |
| generator=rnd, | |
| prompt_embeds=llama_vec, | |
| prompt_embeds_mask=llama_attention_mask, | |
| prompt_poolers=clip_l_pooler, | |
| negative_prompt_embeds=llama_vec_n, | |
| negative_prompt_embeds_mask=llama_attention_mask_n, | |
| negative_prompt_poolers=clip_l_pooler_n, | |
| device=gpu, | |
| dtype=torch.bfloat16, | |
| image_embeddings=image_encoder_last_hidden_state, | |
| latent_indices=latent_indices, | |
| clean_latents=clean_latents, | |
| clean_latent_indices=clean_latent_indices, | |
| clean_latents_2x=clean_latents_2x, | |
| clean_latent_2x_indices=clean_latent_2x_indices, | |
| clean_latents_4x=clean_latents_4x, | |
| clean_latent_4x_indices=clean_latent_4x_indices, | |
| callback=callback, | |
| ) | |
| total_generated_latent_frames += int(generated_latents.shape[2]) | |
| history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2) | |
| if not high_vram: | |
| offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) | |
| load_model_as_complete(vae, target_device=gpu) | |
| real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :] | |
| if history_pixels is None: | |
| history_pixels = vae_decode(real_history_latents, vae).cpu() | |
| else: | |
| section_latent_frames = latent_window_size * 2 | |
| overlapped_frames = latent_window_size * 4 - 3 | |
| current_pixels = vae_decode( | |
| real_history_latents[:, :, -section_latent_frames:], vae | |
| ).cpu() | |
| history_pixels = soft_append_bcthw( | |
| history_pixels, current_pixels, overlapped_frames | |
| ) | |
| if not high_vram: | |
| unload_complete_models() | |
| output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') | |
| save_bcthw_as_mp4(history_pixels, output_filename, fps=30) | |
| print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') | |
| stream.output_queue.push(('file', output_filename)) | |
| except: | |
| traceback.print_exc() | |
| if not high_vram: | |
| unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer) | |
| stream.output_queue.push(('end', None)) | |
| return | |
| def get_duration( | |
| input_image, prompt, t2v, n_prompt, | |
| seed, total_second_length, latent_window_size, | |
| steps, cfg, gs, rs, gpu_memory_preservation, | |
| use_teacache, mp4_crf | |
| ): | |
| return total_second_length * 60 | |
| def process( | |
| input_image, prompt, t2v=False, n_prompt="", seed=31337, | |
| total_second_length=60, latent_window_size=9, steps=25, | |
| cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6, | |
| use_teacache=True, mp4_crf=16 | |
| ): | |
| global stream | |
| if t2v: | |
| default_height, default_width = 640, 640 | |
| input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255 | |
| print("No input image provided. Using a blank white image.") | |
| else: | |
| composite_rgba_uint8 = input_image["composite"] | |
| rgb_uint8 = composite_rgba_uint8[:, :, :3] | |
| mask_uint8 = composite_rgba_uint8[:, :, 3] | |
| h, w = rgb_uint8.shape[:2] | |
| background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8) | |
| alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0 | |
| alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2) | |
| blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \ | |
| background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32) | |
| input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8) | |
| yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) | |
| stream = AsyncStream() | |
| async_run( | |
| worker, input_image, prompt, n_prompt, seed, | |
| total_second_length, latent_window_size, steps, | |
| cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf | |
| ) | |
| output_filename = None | |
| while True: | |
| flag, data = stream.output_queue.next() | |
| if flag == 'file': | |
| output_filename = data | |
| yield ( | |
| output_filename, | |
| gr.update(), | |
| gr.update(), | |
| gr.update(), | |
| gr.update(interactive=False), | |
| gr.update(interactive=True) | |
| ) | |
| elif flag == 'progress': | |
| preview, desc, html = data | |
| yield ( | |
| gr.update(), | |
| gr.update(visible=True, value=preview), | |
| desc, | |
| html, | |
| gr.update(interactive=False), | |
| gr.update(interactive=True) | |
| ) | |
| elif flag == 'end': | |
| yield ( | |
| output_filename, | |
| gr.update(visible=False), | |
| gr.update(), | |
| '', | |
| gr.update(interactive=True), | |
| gr.update(interactive=False) | |
| ) | |
| break | |
| def end_process(): | |
| stream.input_queue.push('end') | |
| quick_prompts = [ | |
| 'The girl dances gracefully, with clear movements, full of charm.', | |
| 'A character doing some simple body movements.' | |
| ] | |
| quick_prompts = [[x] for x in quick_prompts] | |
| def make_custom_css(): | |
| base_progress_css = make_progress_bar_css() | |
| extra_css = """ | |
| body { | |
| background: #fafbfe !important; | |
| font-family: "Noto Sans", sans-serif; | |
| } | |
| #title-container { | |
| text-align: center; | |
| padding: 20px 0; | |
| background: linear-gradient(135deg, #a8c0ff 0%, #fbc2eb 100%); | |
| border-radius: 0 0 10px 10px; | |
| margin-bottom: 20px; | |
| } | |
| #title-container h1 { | |
| color: white; | |
| font-size: 2rem; | |
| margin: 0; | |
| font-weight: 800; | |
| text-shadow: 1px 2px 2px rgba(0,0,0,0.1); | |
| } | |
| .gr-panel { | |
| background: #ffffffcc; | |
| backdrop-filter: blur(4px); | |
| border: 1px solid #dcdcf7; | |
| border-radius: 12px; | |
| padding: 16px; | |
| margin-bottom: 8px; | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
| } | |
| .gr-box > label { | |
| font-size: 0.9rem; | |
| font-weight: 600; | |
| color: #333; | |
| } | |
| .button-container button { | |
| min-height: 48px; | |
| font-size: 1rem; | |
| font-weight: 600; | |
| border-radius: 8px; | |
| border: none !important; | |
| } | |
| .button-container button#start-button { | |
| background-color: #4b9ffa !important; | |
| color: #fff; | |
| } | |
| .button-container button#stop-button { | |
| background-color: #ef5d84 !important; | |
| color: #fff; | |
| } | |
| .button-container button:hover { | |
| filter: brightness(0.97); | |
| } | |
| .no-generating-animation { | |
| margin-top: 10px; | |
| margin-bottom: 10px; | |
| } | |
| """ | |
| return base_progress_css + extra_css | |
| css = make_custom_css() | |
| block = gr.Blocks(css=css).queue() | |
| with block: | |
| # Title (use gr.Group instead of gr.Box for older Gradio versions) | |
| with gr.Group(elem_id="title-container"): | |
| gr.Markdown("<h1>FramePack I2V</h1>") | |
| gr.Markdown(""" | |
| ### Video diffusion, but feels like image diffusion | |
| FramePack I2V - a model that predicts future frames from past frames, | |
| letting you generate short animations from a single image plus text prompt. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.ImageEditor( | |
| type="numpy", | |
| label="Image Editor (use Brush for mask)", | |
| height=320, | |
| brush=gr.Brush(colors=["#ffffff"]) | |
| ) | |
| prompt = gr.Textbox(label="Prompt", value='') | |
| t2v = gr.Checkbox(label="Only Text to Video (ignore image)?", value=False) | |
| example_quick_prompts = gr.Dataset( | |
| samples=quick_prompts, | |
| label="Quick Prompts", | |
| samples_per_page=1000, | |
| components=[prompt] | |
| ) | |
| example_quick_prompts.click( | |
| fn=lambda x: x[0], | |
| inputs=[example_quick_prompts], | |
| outputs=prompt, | |
| show_progress=False, | |
| queue=False | |
| ) | |
| with gr.Row(elem_classes="button-container"): | |
| start_button = gr.Button(value="Start Generation", elem_id="start-button") | |
| end_button = gr.Button(value="Stop Generation", elem_id="stop-button", interactive=False) | |
| total_second_length = gr.Slider( | |
| label="Total Video Length (Seconds)", | |
| minimum=1, | |
| maximum=60, | |
| value=2, | |
| step=0.1 | |
| ) | |
| with gr.Group(): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| use_teacache = gr.Checkbox( | |
| label='Use TeaCache', | |
| value=True, | |
| info='Faster speed, but may worsen hands/fingers.' | |
| ) | |
| n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) | |
| seed = gr.Number(label="Seed", value=31337, precision=0) | |
| latent_window_size = gr.Slider( | |
| label="Latent Window Size", | |
| minimum=1, maximum=33, | |
| value=9, step=1, | |
| visible=False | |
| ) | |
| steps = gr.Slider( | |
| label="Steps", | |
| minimum=1, maximum=100, | |
| value=25, step=1, | |
| info='Not recommended to change drastically.' | |
| ) | |
| cfg = gr.Slider( | |
| label="CFG Scale", | |
| minimum=1.0, maximum=32.0, | |
| value=1.0, step=0.01, | |
| visible=False | |
| ) | |
| gs = gr.Slider( | |
| label="Distilled CFG Scale", | |
| minimum=1.0, maximum=32.0, | |
| value=10.0, step=0.01, | |
| info='Not recommended to change drastically.' | |
| ) | |
| rs = gr.Slider( | |
| label="CFG Re-Scale", | |
| minimum=0.0, maximum=1.0, | |
| value=0.0, step=0.01, | |
| visible=False | |
| ) | |
| gpu_memory_preservation = gr.Slider( | |
| label="GPU Memory Preservation (GB)", | |
| minimum=6, maximum=128, | |
| value=6, step=0.1, | |
| info="Increase if OOM occurs, but slower." | |
| ) | |
| mp4_crf = gr.Slider( | |
| label="MP4 Compression (CRF)", | |
| minimum=0, maximum=100, | |
| value=16, step=1, | |
| info="Lower = better quality. 16 recommended." | |
| ) | |
| with gr.Column(): | |
| preview_image = gr.Image( | |
| label="Preview Latents", | |
| height=200, | |
| visible=False | |
| ) | |
| result_video = gr.Video( | |
| label="Finished Frames", | |
| autoplay=True, | |
| show_share_button=False, | |
| height=512, | |
| loop=True | |
| ) | |
| progress_desc = gr.Markdown('', elem_classes='no-generating-animation') | |
| progress_bar = gr.HTML('', elem_classes='no-generating-animation') | |
| ips = [ | |
| input_image, prompt, t2v, n_prompt, seed, | |
| total_second_length, latent_window_size, | |
| steps, cfg, gs, rs, gpu_memory_preservation, | |
| use_teacache, mp4_crf | |
| ] | |
| start_button.click( | |
| fn=process, | |
| inputs=ips, | |
| outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button] | |
| ) | |
| end_button.click(fn=end_process) | |
| block.launch(share=True) | |