Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,74 +3,20 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
from diffusers import DiffusionPipeline
|
| 6 |
-
import warnings
|
| 7 |
-
import os
|
| 8 |
-
from datetime import datetime
|
| 9 |
-
import uuid
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
# 저장 디렉토리 생성
|
| 15 |
-
SAVE_DIR = "saved_images"
|
| 16 |
-
if not os.path.exists(SAVE_DIR):
|
| 17 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 18 |
-
|
| 19 |
-
# 장치 및 dtype 설정
|
| 20 |
-
dtype = torch.float32 if torch.cuda.is_available() else torch.float32
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
| 23 |
# 모델 로드
|
| 24 |
pipe = DiffusionPipeline.from_pretrained(
|
| 25 |
-
"black-forest-labs/FLUX.1-schnell",
|
| 26 |
-
torch_dtype=dtype
|
| 27 |
-
device_map="balanced" if torch.cuda.is_available() else None,
|
| 28 |
-
use_safetensors=True
|
| 29 |
).to(device)
|
| 30 |
|
| 31 |
-
# 메모리 최적화
|
| 32 |
-
pipe.enable_attention_slicing()
|
| 33 |
-
if device == "cpu":
|
| 34 |
-
pipe.enable_sequential_cpu_offload()
|
| 35 |
-
|
| 36 |
MAX_SEED = np.iinfo(np.int32).max
|
| 37 |
MAX_IMAGE_SIZE = 2048
|
| 38 |
|
| 39 |
-
def generate_diagram(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4):
|
| 40 |
-
"""FLUX AI를 사용하여 다이어그램 생성"""
|
| 41 |
-
try:
|
| 42 |
-
if randomize_seed:
|
| 43 |
-
seed = random.randint(0, MAX_SEED)
|
| 44 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 45 |
-
|
| 46 |
-
with torch.no_grad():
|
| 47 |
-
image = pipe(
|
| 48 |
-
prompt=prompt,
|
| 49 |
-
width=width,
|
| 50 |
-
height=height,
|
| 51 |
-
num_inference_steps=num_inference_steps,
|
| 52 |
-
generator=generator,
|
| 53 |
-
guidance_scale=0.0
|
| 54 |
-
).images[0]
|
| 55 |
-
|
| 56 |
-
# 이미지 저장
|
| 57 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 58 |
-
unique_id = str(uuid.uuid4())[:8]
|
| 59 |
-
filename = f"diagram_{timestamp}_{unique_id}.png"
|
| 60 |
-
save_path = os.path.join(SAVE_DIR, filename)
|
| 61 |
-
image.save(save_path)
|
| 62 |
-
|
| 63 |
-
return image, seed
|
| 64 |
-
|
| 65 |
-
except Exception as e:
|
| 66 |
-
raise gr.Error(f"다이어그램 생성 중 오류 발생: {str(e)}")
|
| 67 |
-
finally:
|
| 68 |
-
if torch.cuda.is_available():
|
| 69 |
-
torch.cuda.empty_cache()
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
# Enhanced examples with more detailed prompts and specific styling
|
| 75 |
EXAMPLES = [
|
| 76 |
{
|
|
@@ -272,33 +218,19 @@ GRADIO_EXAMPLES = [
|
|
| 272 |
for example in EXAMPLES
|
| 273 |
]
|
| 274 |
|
| 275 |
-
def
|
| 276 |
-
|
| 277 |
-
try:
|
| 278 |
-
# 시드 설정
|
| 279 |
seed = random.randint(0, MAX_SEED)
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
# 이미지 저장
|
| 292 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 293 |
-
unique_id = str(uuid.uuid4())[:8]
|
| 294 |
-
filename = f"diagram_{timestamp}_{unique_id}.png"
|
| 295 |
-
save_path = os.path.join(SAVE_DIR, filename)
|
| 296 |
-
image.save(save_path)
|
| 297 |
-
|
| 298 |
-
return image
|
| 299 |
-
|
| 300 |
-
except Exception as e:
|
| 301 |
-
raise gr.Error(f"다이어그램 생성 중 오류 발생: {str(e)}")
|
| 302 |
|
| 303 |
# CSS 스타일
|
| 304 |
css="""
|
|
@@ -311,36 +243,37 @@ css="""
|
|
| 311 |
# Gradio 인터페이스 생성
|
| 312 |
with gr.Blocks(css=css) as demo:
|
| 313 |
with gr.Column(elem_id="col-container"):
|
| 314 |
-
gr.Markdown("""# FLUX
|
| 315 |
-
|
|
|
|
| 316 |
""")
|
| 317 |
|
| 318 |
with gr.Row():
|
| 319 |
prompt = gr.Text(
|
| 320 |
-
label="
|
| 321 |
show_label=False,
|
| 322 |
max_lines=1,
|
| 323 |
-
placeholder="
|
| 324 |
container=False,
|
| 325 |
)
|
| 326 |
-
run_button = gr.Button("
|
| 327 |
|
| 328 |
-
result = gr.Image(label="
|
| 329 |
|
| 330 |
-
with gr.Accordion("
|
| 331 |
seed = gr.Slider(
|
| 332 |
-
label="
|
| 333 |
minimum=0,
|
| 334 |
maximum=MAX_SEED,
|
| 335 |
step=1,
|
| 336 |
value=0,
|
| 337 |
)
|
| 338 |
|
| 339 |
-
randomize_seed = gr.Checkbox(label="
|
| 340 |
|
| 341 |
with gr.Row():
|
| 342 |
width = gr.Slider(
|
| 343 |
-
label="
|
| 344 |
minimum=256,
|
| 345 |
maximum=MAX_IMAGE_SIZE,
|
| 346 |
step=32,
|
|
@@ -348,7 +281,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 348 |
)
|
| 349 |
|
| 350 |
height = gr.Slider(
|
| 351 |
-
label="
|
| 352 |
minimum=256,
|
| 353 |
maximum=MAX_IMAGE_SIZE,
|
| 354 |
step=32,
|
|
@@ -356,26 +289,24 @@ with gr.Blocks(css=css) as demo:
|
|
| 356 |
)
|
| 357 |
|
| 358 |
num_inference_steps = gr.Slider(
|
| 359 |
-
label="
|
| 360 |
minimum=1,
|
| 361 |
maximum=50,
|
| 362 |
step=1,
|
| 363 |
value=4,
|
| 364 |
)
|
| 365 |
|
| 366 |
-
# 예제 추가
|
| 367 |
gr.Examples(
|
| 368 |
-
examples=
|
| 369 |
-
fn=
|
| 370 |
inputs=[prompt],
|
| 371 |
outputs=[result, seed],
|
| 372 |
-
cache_examples=
|
| 373 |
)
|
| 374 |
|
| 375 |
-
# 이벤트 핸들러
|
| 376 |
gr.on(
|
| 377 |
triggers=[run_button.click, prompt.submit],
|
| 378 |
-
fn=
|
| 379 |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 380 |
outputs=[result, seed]
|
| 381 |
)
|
|
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# 기본 설정
|
| 8 |
+
dtype = torch.bfloat16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
# 모델 로드
|
| 12 |
pipe = DiffusionPipeline.from_pretrained(
|
| 13 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 14 |
+
torch_dtype=dtype
|
|
|
|
|
|
|
| 15 |
).to(device)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
MAX_IMAGE_SIZE = 2048
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Enhanced examples with more detailed prompts and specific styling
|
| 21 |
EXAMPLES = [
|
| 22 |
{
|
|
|
|
| 218 |
for example in EXAMPLES
|
| 219 |
]
|
| 220 |
|
| 221 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 222 |
+
if randomize_seed:
|
|
|
|
|
|
|
| 223 |
seed = random.randint(0, MAX_SEED)
|
| 224 |
+
generator = torch.Generator().manual_seed(seed)
|
| 225 |
+
image = pipe(
|
| 226 |
+
prompt=prompt,
|
| 227 |
+
width=width,
|
| 228 |
+
height=height,
|
| 229 |
+
num_inference_steps=num_inference_steps,
|
| 230 |
+
generator=generator,
|
| 231 |
+
guidance_scale=0.0
|
| 232 |
+
).images[0]
|
| 233 |
+
return image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
# CSS 스타일
|
| 236 |
css="""
|
|
|
|
| 243 |
# Gradio 인터페이스 생성
|
| 244 |
with gr.Blocks(css=css) as demo:
|
| 245 |
with gr.Column(elem_id="col-container"):
|
| 246 |
+
gr.Markdown("""# FLUX.1 [schnell]
|
| 247 |
+
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
| 248 |
+
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
| 249 |
""")
|
| 250 |
|
| 251 |
with gr.Row():
|
| 252 |
prompt = gr.Text(
|
| 253 |
+
label="Prompt",
|
| 254 |
show_label=False,
|
| 255 |
max_lines=1,
|
| 256 |
+
placeholder="Enter your prompt",
|
| 257 |
container=False,
|
| 258 |
)
|
| 259 |
+
run_button = gr.Button("Run", scale=0)
|
| 260 |
|
| 261 |
+
result = gr.Image(label="Result", show_label=False)
|
| 262 |
|
| 263 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 264 |
seed = gr.Slider(
|
| 265 |
+
label="Seed",
|
| 266 |
minimum=0,
|
| 267 |
maximum=MAX_SEED,
|
| 268 |
step=1,
|
| 269 |
value=0,
|
| 270 |
)
|
| 271 |
|
| 272 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 273 |
|
| 274 |
with gr.Row():
|
| 275 |
width = gr.Slider(
|
| 276 |
+
label="Width",
|
| 277 |
minimum=256,
|
| 278 |
maximum=MAX_IMAGE_SIZE,
|
| 279 |
step=32,
|
|
|
|
| 281 |
)
|
| 282 |
|
| 283 |
height = gr.Slider(
|
| 284 |
+
label="Height",
|
| 285 |
minimum=256,
|
| 286 |
maximum=MAX_IMAGE_SIZE,
|
| 287 |
step=32,
|
|
|
|
| 289 |
)
|
| 290 |
|
| 291 |
num_inference_steps = gr.Slider(
|
| 292 |
+
label="Number of inference steps",
|
| 293 |
minimum=1,
|
| 294 |
maximum=50,
|
| 295 |
step=1,
|
| 296 |
value=4,
|
| 297 |
)
|
| 298 |
|
|
|
|
| 299 |
gr.Examples(
|
| 300 |
+
examples=GRADIO_EXAMPLES,
|
| 301 |
+
fn=infer,
|
| 302 |
inputs=[prompt],
|
| 303 |
outputs=[result, seed],
|
| 304 |
+
cache_examples="lazy"
|
| 305 |
)
|
| 306 |
|
|
|
|
| 307 |
gr.on(
|
| 308 |
triggers=[run_button.click, prompt.submit],
|
| 309 |
+
fn=infer,
|
| 310 |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 311 |
outputs=[result, seed]
|
| 312 |
)
|