Spaces:
Paused
Paused
| import display_gloss as dg | |
| import synonyms_preprocess as sp | |
| from NLP_Spacy_base_translator import NlpSpacyBaseTranslator | |
| from flask import Flask, render_template, Response, request | |
| import googletrans | |
| from googletrans import Translator | |
| app = Flask(__name__, static_folder='static') | |
| app.config['TITLE'] = 'Sign Language Translate' | |
| nlp, dict_docs_spacy = sp.load_spacy_values() | |
| dataset, list_2000_tokens = dg.load_data() | |
| translator = Translator(service_urls=['translate.google.com']) | |
| def translate_korean_to_english(text): | |
| try: | |
| # 한글 감지 | |
| if any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in text): | |
| translation = translator.translate(text, src='ko', dest='en') | |
| print(f"Translation result: {translation.text}") # 디버깅용 | |
| return translation.text | |
| return text | |
| except Exception as e: | |
| print(f"Translation error: {e}") | |
| try: | |
| # 백업 방식으로 파파고 API 사용 | |
| headers = { | |
| 'X-Naver-Client-Id': 'YOUR_CLIENT_ID', | |
| 'X-Naver-Client-Secret': 'YOUR_CLIENT_SECRET' | |
| } | |
| data = { | |
| 'source': 'ko', | |
| 'target': 'en', | |
| 'text': text | |
| } | |
| response = requests.post('https://openapi.naver.com/v1/papago/n2mt', headers=headers, data=data) | |
| return response.json()['message']['result']['translatedText'] | |
| except: | |
| return text | |
| def index(): | |
| return render_template('index.html', title=app.config['TITLE']) | |
| def result(): | |
| if request.method == 'POST': | |
| input_text = request.form['inputSentence'] | |
| try: | |
| english_text = translate_korean_to_english(input_text) | |
| if english_text == input_text and any('\u3131' <= char <= '\u318F' or '\uAC00' <= char <= '\uD7A3' for char in input_text): | |
| raise Exception("Translation failed") | |
| eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text) | |
| generated_gloss = eng_to_asl_translator.translate_to_gloss() | |
| gloss_list_lower = [gloss.lower() for gloss in generated_gloss.split() if gloss.isalnum()] | |
| gloss_sentence_before_synonym = " ".join(gloss_list_lower) | |
| gloss_list = [sp.find_synonyms(gloss, nlp, dict_docs_spacy, list_2000_tokens) | |
| for gloss in gloss_list_lower] | |
| gloss_sentence_after_synonym = " ".join(gloss_list) | |
| return render_template('result.html', | |
| title=app.config['TITLE'], | |
| original_sentence=input_text, | |
| english_translation=english_text, | |
| gloss_sentence_before_synonym=gloss_sentence_before_synonym, | |
| gloss_sentence_after_synonym=gloss_sentence_after_synonym) | |
| except Exception as e: | |
| print(f"Error in translation process: {e}") | |
| return render_template('error.html', error=str(e)) | |
| def video_feed(): | |
| sentence = request.args.get('gloss_sentence_to_display', '') | |
| gloss_list = sentence.split() | |
| return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), | |
| mimetype='multipart/x-mixed-replace; boundary=frame') | |
| if __name__ == "__main__": | |
| app.run(host="0.0.0.0", port=7860, debug=True) |