Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import replicate
|
| 3 |
+
import os
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import time
|
| 8 |
+
import tempfile
|
| 9 |
+
import base64
|
| 10 |
+
import spaces
|
| 11 |
+
import torch
|
| 12 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 13 |
+
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 14 |
+
from diffusers.utils.export_utils import export_to_video
|
| 15 |
+
import numpy as np
|
| 16 |
+
import random
|
| 17 |
+
import gc
|
| 18 |
+
|
| 19 |
+
# ===========================
|
| 20 |
+
# Configuration
|
| 21 |
+
# ===========================
|
| 22 |
+
|
| 23 |
+
# Set up Replicate API key
|
| 24 |
+
os.environ['REPLICATE_API_TOKEN'] = os.getenv('REPLICATE_API_TOKEN')
|
| 25 |
+
|
| 26 |
+
# Video Model Configuration
|
| 27 |
+
VIDEO_MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 28 |
+
LANDSCAPE_WIDTH = 832
|
| 29 |
+
LANDSCAPE_HEIGHT = 480
|
| 30 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 31 |
+
FIXED_FPS = 16
|
| 32 |
+
MIN_FRAMES_MODEL = 8
|
| 33 |
+
MAX_FRAMES_MODEL = 81
|
| 34 |
+
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
|
| 35 |
+
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)
|
| 36 |
+
|
| 37 |
+
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
| 38 |
+
default_negative_prompt = "static, still, no motion, frozen"
|
| 39 |
+
|
| 40 |
+
# ===========================
|
| 41 |
+
# Initialize Video Pipeline
|
| 42 |
+
# ===========================
|
| 43 |
+
|
| 44 |
+
# Initialize once on startup
|
| 45 |
+
video_pipe = None
|
| 46 |
+
|
| 47 |
+
def initialize_video_pipeline():
|
| 48 |
+
global video_pipe
|
| 49 |
+
if video_pipe is None:
|
| 50 |
+
try:
|
| 51 |
+
# Install PyTorch 2.8 (if needed)
|
| 52 |
+
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
| 53 |
+
|
| 54 |
+
video_pipe = WanImageToVideoPipeline.from_pretrained(VIDEO_MODEL_ID,
|
| 55 |
+
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 56 |
+
subfolder='transformer',
|
| 57 |
+
torch_dtype=torch.bfloat16,
|
| 58 |
+
device_map='cuda',
|
| 59 |
+
),
|
| 60 |
+
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 61 |
+
subfolder='transformer_2',
|
| 62 |
+
torch_dtype=torch.bfloat16,
|
| 63 |
+
device_map='cuda',
|
| 64 |
+
),
|
| 65 |
+
torch_dtype=torch.bfloat16,
|
| 66 |
+
).to('cuda')
|
| 67 |
+
|
| 68 |
+
# Clear memory
|
| 69 |
+
for i in range(3):
|
| 70 |
+
gc.collect()
|
| 71 |
+
torch.cuda.synchronize()
|
| 72 |
+
torch.cuda.empty_cache()
|
| 73 |
+
|
| 74 |
+
print("Video pipeline initialized successfully!")
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(f"Error initializing video pipeline: {e}")
|
| 77 |
+
video_pipe = None
|
| 78 |
+
|
| 79 |
+
# ===========================
|
| 80 |
+
# Image Processing Functions
|
| 81 |
+
# ===========================
|
| 82 |
+
|
| 83 |
+
def upload_image_to_hosting(image):
|
| 84 |
+
"""Upload image to multiple hosting services with fallback"""
|
| 85 |
+
# Method 1: Try imgbb.com
|
| 86 |
+
try:
|
| 87 |
+
buffered = BytesIO()
|
| 88 |
+
image.save(buffered, format="PNG")
|
| 89 |
+
buffered.seek(0)
|
| 90 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode()
|
| 91 |
+
|
| 92 |
+
response = requests.post(
|
| 93 |
+
"https://api.imgbb.com/1/upload",
|
| 94 |
+
data={
|
| 95 |
+
'key': '6d207e02198a847aa98d0a2a901485a5',
|
| 96 |
+
'image': img_base64,
|
| 97 |
+
}
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if response.status_code == 200:
|
| 101 |
+
data = response.json()
|
| 102 |
+
if data.get('success'):
|
| 103 |
+
return data['data']['url']
|
| 104 |
+
except:
|
| 105 |
+
pass
|
| 106 |
+
|
| 107 |
+
# Method 2: Try 0x0.st
|
| 108 |
+
try:
|
| 109 |
+
buffered = BytesIO()
|
| 110 |
+
image.save(buffered, format="PNG")
|
| 111 |
+
buffered.seek(0)
|
| 112 |
+
|
| 113 |
+
files = {'file': ('image.png', buffered, 'image/png')}
|
| 114 |
+
response = requests.post("https://0x0.st", files=files)
|
| 115 |
+
|
| 116 |
+
if response.status_code == 200:
|
| 117 |
+
return response.text.strip()
|
| 118 |
+
except:
|
| 119 |
+
pass
|
| 120 |
+
|
| 121 |
+
# Method 3: Fallback to base64
|
| 122 |
+
buffered = BytesIO()
|
| 123 |
+
image.save(buffered, format="PNG")
|
| 124 |
+
buffered.seek(0)
|
| 125 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode()
|
| 126 |
+
return f"data:image/png;base64,{img_base64}"
|
| 127 |
+
|
| 128 |
+
def process_images(prompt, image1, image2=None):
|
| 129 |
+
"""Process uploaded images with Replicate API"""
|
| 130 |
+
if not image1:
|
| 131 |
+
return None, "Please upload at least one image", None
|
| 132 |
+
|
| 133 |
+
if not os.getenv('REPLICATE_API_TOKEN'):
|
| 134 |
+
return None, "Please set REPLICATE_API_TOKEN", None
|
| 135 |
+
|
| 136 |
+
try:
|
| 137 |
+
image_urls = []
|
| 138 |
+
|
| 139 |
+
# Upload images
|
| 140 |
+
url1 = upload_image_to_hosting(image1)
|
| 141 |
+
image_urls.append(url1)
|
| 142 |
+
|
| 143 |
+
if image2:
|
| 144 |
+
url2 = upload_image_to_hosting(image2)
|
| 145 |
+
image_urls.append(url2)
|
| 146 |
+
|
| 147 |
+
# Run the model
|
| 148 |
+
output = replicate.run(
|
| 149 |
+
"google/nano-banana",
|
| 150 |
+
input={
|
| 151 |
+
"prompt": prompt,
|
| 152 |
+
"image_input": image_urls
|
| 153 |
+
}
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if output is None:
|
| 157 |
+
return None, "No output received", None
|
| 158 |
+
|
| 159 |
+
# Get the generated image
|
| 160 |
+
img = None
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
if hasattr(output, 'read'):
|
| 164 |
+
img_data = output.read()
|
| 165 |
+
img = Image.open(BytesIO(img_data))
|
| 166 |
+
except:
|
| 167 |
+
pass
|
| 168 |
+
|
| 169 |
+
if img is None:
|
| 170 |
+
try:
|
| 171 |
+
if hasattr(output, 'url'):
|
| 172 |
+
output_url = output.url()
|
| 173 |
+
response = requests.get(output_url, timeout=30)
|
| 174 |
+
if response.status_code == 200:
|
| 175 |
+
img = Image.open(BytesIO(response.content))
|
| 176 |
+
except:
|
| 177 |
+
pass
|
| 178 |
+
|
| 179 |
+
if img is None:
|
| 180 |
+
output_url = None
|
| 181 |
+
if isinstance(output, str):
|
| 182 |
+
output_url = output
|
| 183 |
+
elif isinstance(output, list) and len(output) > 0:
|
| 184 |
+
output_url = output[0]
|
| 185 |
+
|
| 186 |
+
if output_url:
|
| 187 |
+
response = requests.get(output_url, timeout=30)
|
| 188 |
+
if response.status_code == 200:
|
| 189 |
+
img = Image.open(BytesIO(response.content))
|
| 190 |
+
|
| 191 |
+
if img:
|
| 192 |
+
return img, "✨ Image generated successfully! You can now generate a video from this image.", img
|
| 193 |
+
else:
|
| 194 |
+
return None, "Could not process output", None
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
return None, f"Error: {str(e)[:100]}", None
|
| 198 |
+
|
| 199 |
+
# ===========================
|
| 200 |
+
# Video Generation Functions
|
| 201 |
+
# ===========================
|
| 202 |
+
|
| 203 |
+
def resize_image_for_video(image: Image.Image) -> Image.Image:
|
| 204 |
+
"""Resize image for video generation"""
|
| 205 |
+
if image.height > image.width:
|
| 206 |
+
transposed = image.transpose(Image.Transpose.ROTATE_90)
|
| 207 |
+
resized = resize_image_landscape(transposed)
|
| 208 |
+
return resized.transpose(Image.Transpose.ROTATE_270)
|
| 209 |
+
return resize_image_landscape(image)
|
| 210 |
+
|
| 211 |
+
def resize_image_landscape(image: Image.Image) -> Image.Image:
|
| 212 |
+
"""Resize landscape image to target dimensions"""
|
| 213 |
+
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
|
| 214 |
+
width, height = image.size
|
| 215 |
+
in_aspect = width / height
|
| 216 |
+
|
| 217 |
+
if in_aspect > target_aspect:
|
| 218 |
+
new_width = round(height * target_aspect)
|
| 219 |
+
left = (width - new_width) // 2
|
| 220 |
+
image = image.crop((left, 0, left + new_width, height))
|
| 221 |
+
else:
|
| 222 |
+
new_height = round(width / target_aspect)
|
| 223 |
+
top = (height - new_height) // 2
|
| 224 |
+
image = image.crop((0, top, width, top + new_height))
|
| 225 |
+
|
| 226 |
+
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
|
| 227 |
+
|
| 228 |
+
@spaces.GPU(duration=120)
|
| 229 |
+
def generate_video(
|
| 230 |
+
input_image,
|
| 231 |
+
prompt,
|
| 232 |
+
steps=4,
|
| 233 |
+
negative_prompt=default_negative_prompt,
|
| 234 |
+
duration_seconds=MAX_DURATION,
|
| 235 |
+
guidance_scale=1,
|
| 236 |
+
guidance_scale_2=1,
|
| 237 |
+
seed=42,
|
| 238 |
+
randomize_seed=False,
|
| 239 |
+
progress=gr.Progress(track_tqdm=True),
|
| 240 |
+
):
|
| 241 |
+
"""Generate a video from an input image"""
|
| 242 |
+
if input_image is None:
|
| 243 |
+
raise gr.Error("Please generate or upload an image first.")
|
| 244 |
+
|
| 245 |
+
# Initialize pipeline if needed
|
| 246 |
+
initialize_video_pipeline()
|
| 247 |
+
|
| 248 |
+
if video_pipe is None:
|
| 249 |
+
raise gr.Error("Video pipeline not initialized. Please check GPU availability.")
|
| 250 |
+
|
| 251 |
+
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
| 252 |
+
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 253 |
+
resized_image = resize_image_for_video(input_image)
|
| 254 |
+
|
| 255 |
+
output_frames_list = video_pipe(
|
| 256 |
+
image=resized_image,
|
| 257 |
+
prompt=prompt,
|
| 258 |
+
negative_prompt=negative_prompt,
|
| 259 |
+
height=resized_image.height,
|
| 260 |
+
width=resized_image.width,
|
| 261 |
+
num_frames=num_frames,
|
| 262 |
+
guidance_scale=float(guidance_scale),
|
| 263 |
+
guidance_scale_2=float(guidance_scale_2),
|
| 264 |
+
num_inference_steps=int(steps),
|
| 265 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
| 266 |
+
).frames[0]
|
| 267 |
+
|
| 268 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 269 |
+
video_path = tmpfile.name
|
| 270 |
+
|
| 271 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 272 |
+
|
| 273 |
+
return video_path, current_seed, "🎬 Video generated successfully!"
|
| 274 |
+
|
| 275 |
+
# ===========================
|
| 276 |
+
# Enhanced CSS
|
| 277 |
+
# ===========================
|
| 278 |
+
|
| 279 |
+
css = """
|
| 280 |
+
.gradio-container {
|
| 281 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
| 282 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
|
| 283 |
+
min-height: 100vh;
|
| 284 |
+
}
|
| 285 |
+
.header-container {
|
| 286 |
+
background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%);
|
| 287 |
+
padding: 2.5rem;
|
| 288 |
+
border-radius: 24px;
|
| 289 |
+
margin-bottom: 2.5rem;
|
| 290 |
+
box-shadow: 0 20px 60px rgba(255, 179, 71, 0.25);
|
| 291 |
+
}
|
| 292 |
+
.logo-text {
|
| 293 |
+
font-size: 3.5rem;
|
| 294 |
+
font-weight: 900;
|
| 295 |
+
color: #2d3436;
|
| 296 |
+
text-align: center;
|
| 297 |
+
margin: 0;
|
| 298 |
+
letter-spacing: -2px;
|
| 299 |
+
}
|
| 300 |
+
.subtitle {
|
| 301 |
+
color: #2d3436;
|
| 302 |
+
text-align: center;
|
| 303 |
+
font-size: 1.2rem;
|
| 304 |
+
margin-top: 0.5rem;
|
| 305 |
+
opacity: 0.9;
|
| 306 |
+
font-weight: 600;
|
| 307 |
+
}
|
| 308 |
+
.main-content {
|
| 309 |
+
background: rgba(255, 255, 255, 0.95);
|
| 310 |
+
backdrop-filter: blur(20px);
|
| 311 |
+
border-radius: 24px;
|
| 312 |
+
padding: 2.5rem;
|
| 313 |
+
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
|
| 314 |
+
margin-bottom: 2rem;
|
| 315 |
+
}
|
| 316 |
+
.gr-button-primary {
|
| 317 |
+
background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%) !important;
|
| 318 |
+
border: none !important;
|
| 319 |
+
color: #2d3436 !important;
|
| 320 |
+
font-weight: 700 !important;
|
| 321 |
+
font-size: 1.1rem !important;
|
| 322 |
+
padding: 1.2rem 2rem !important;
|
| 323 |
+
border-radius: 14px !important;
|
| 324 |
+
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
| 325 |
+
text-transform: uppercase;
|
| 326 |
+
letter-spacing: 1px;
|
| 327 |
+
width: 100%;
|
| 328 |
+
margin-top: 1rem !important;
|
| 329 |
+
}
|
| 330 |
+
.gr-button-primary:hover {
|
| 331 |
+
transform: translateY(-3px) !important;
|
| 332 |
+
box-shadow: 0 15px 40px rgba(255, 179, 71, 0.35) !important;
|
| 333 |
+
}
|
| 334 |
+
.gr-button-secondary {
|
| 335 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 336 |
+
border: none !important;
|
| 337 |
+
color: white !important;
|
| 338 |
+
font-weight: 700 !important;
|
| 339 |
+
font-size: 1.1rem !important;
|
| 340 |
+
padding: 1.2rem 2rem !important;
|
| 341 |
+
border-radius: 14px !important;
|
| 342 |
+
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
| 343 |
+
text-transform: uppercase;
|
| 344 |
+
letter-spacing: 1px;
|
| 345 |
+
width: 100%;
|
| 346 |
+
margin-top: 1rem !important;
|
| 347 |
+
}
|
| 348 |
+
.gr-button-secondary:hover {
|
| 349 |
+
transform: translateY(-3px) !important;
|
| 350 |
+
box-shadow: 0 15px 40px rgba(102, 126, 234, 0.35) !important;
|
| 351 |
+
}
|
| 352 |
+
.section-title {
|
| 353 |
+
font-size: 1.8rem;
|
| 354 |
+
font-weight: 800;
|
| 355 |
+
color: #2d3436;
|
| 356 |
+
margin-bottom: 1rem;
|
| 357 |
+
padding-bottom: 0.5rem;
|
| 358 |
+
border-bottom: 3px solid #ffd93d;
|
| 359 |
+
}
|
| 360 |
+
.status-text {
|
| 361 |
+
font-family: 'SF Mono', 'Monaco', monospace;
|
| 362 |
+
color: #00b894;
|
| 363 |
+
font-size: 0.9rem;
|
| 364 |
+
}
|
| 365 |
+
.image-container {
|
| 366 |
+
border-radius: 14px !important;
|
| 367 |
+
overflow: hidden;
|
| 368 |
+
border: 2px solid #e1e8ed !important;
|
| 369 |
+
background: #fafbfc !important;
|
| 370 |
+
}
|
| 371 |
+
footer {
|
| 372 |
+
display: none !important;
|
| 373 |
+
}
|
| 374 |
+
"""
|
| 375 |
+
|
| 376 |
+
# ===========================
|
| 377 |
+
# Gradio Interface
|
| 378 |
+
# ===========================
|
| 379 |
+
|
| 380 |
+
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
|
| 381 |
+
# Shared state for passing image between tabs
|
| 382 |
+
generated_image_state = gr.State(None)
|
| 383 |
+
|
| 384 |
+
with gr.Column(elem_classes="header-container"):
|
| 385 |
+
gr.HTML("""
|
| 386 |
+
<h1 class="logo-text">🍌 Open Nano Banana + Video</h1>
|
| 387 |
+
<p class="subtitle">AI-Powered Image Style Transfer with Video Generation</p>
|
| 388 |
+
<div style="display: flex; justify-content: center; align-items: center; gap: 10px; margin-top: 20px;">
|
| 389 |
+
<a href="https://huggingface.co/spaces/openfree/Nano-Banana-Upscale" target="_blank">
|
| 390 |
+
<img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=UPSCALE&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Nano Banana Upscale">
|
| 391 |
+
</a>
|
| 392 |
+
<a href="https://discord.gg/openfreeai" target="_blank">
|
| 393 |
+
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord Openfree AI">
|
| 394 |
+
</a>
|
| 395 |
+
</div>
|
| 396 |
+
""")
|
| 397 |
+
|
| 398 |
+
with gr.Tabs():
|
| 399 |
+
# Tab 1: Image Generation
|
| 400 |
+
with gr.TabItem("🎨 Step 1: Generate Image"):
|
| 401 |
+
with gr.Column(elem_classes="main-content"):
|
| 402 |
+
gr.HTML('<h2 class="section-title">🎨 Image Style Transfer</h2>')
|
| 403 |
+
|
| 404 |
+
with gr.Row(equal_height=True):
|
| 405 |
+
with gr.Column(scale=1):
|
| 406 |
+
style_prompt = gr.Textbox(
|
| 407 |
+
label="Style Description",
|
| 408 |
+
placeholder="Describe your style...",
|
| 409 |
+
lines=3,
|
| 410 |
+
value="Make the sheets in the style of the logo. Make the scene natural.",
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
with gr.Row(equal_height=True):
|
| 414 |
+
image1 = gr.Image(
|
| 415 |
+
label="Primary Image",
|
| 416 |
+
type="pil",
|
| 417 |
+
height=200,
|
| 418 |
+
elem_classes="image-container"
|
| 419 |
+
)
|
| 420 |
+
image2 = gr.Image(
|
| 421 |
+
label="Secondary Image (Optional)",
|
| 422 |
+
type="pil",
|
| 423 |
+
height=200,
|
| 424 |
+
elem_classes="image-container"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
generate_img_btn = gr.Button(
|
| 428 |
+
"Generate Image ✨",
|
| 429 |
+
variant="primary",
|
| 430 |
+
size="lg"
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
with gr.Column(scale=1):
|
| 434 |
+
output_image = gr.Image(
|
| 435 |
+
label="Generated Result",
|
| 436 |
+
type="pil",
|
| 437 |
+
height=420,
|
| 438 |
+
elem_classes="image-container"
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
img_status = gr.Textbox(
|
| 442 |
+
label="Status",
|
| 443 |
+
interactive=False,
|
| 444 |
+
lines=1,
|
| 445 |
+
elem_classes="status-text",
|
| 446 |
+
value="Ready to generate image..."
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
send_to_video_btn = gr.Button(
|
| 450 |
+
"Send to Video Generation →",
|
| 451 |
+
variant="secondary",
|
| 452 |
+
size="lg",
|
| 453 |
+
visible=False
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# Tab 2: Video Generation
|
| 457 |
+
with gr.TabItem("🎬 Step 2: Generate Video"):
|
| 458 |
+
with gr.Column(elem_classes="main-content"):
|
| 459 |
+
gr.HTML('<h2 class="section-title">🎬 Video Generation from Image</h2>')
|
| 460 |
+
|
| 461 |
+
with gr.Row():
|
| 462 |
+
with gr.Column():
|
| 463 |
+
video_input_image = gr.Image(
|
| 464 |
+
type="pil",
|
| 465 |
+
label="Input Image (from Step 1 or upload new)",
|
| 466 |
+
elem_classes="image-container"
|
| 467 |
+
)
|
| 468 |
+
video_prompt = gr.Textbox(
|
| 469 |
+
label="Animation Prompt",
|
| 470 |
+
value=default_prompt_i2v,
|
| 471 |
+
lines=3
|
| 472 |
+
)
|
| 473 |
+
duration_input = gr.Slider(
|
| 474 |
+
minimum=MIN_DURATION,
|
| 475 |
+
maximum=MAX_DURATION,
|
| 476 |
+
step=0.1,
|
| 477 |
+
value=3.5,
|
| 478 |
+
label="Duration (seconds)",
|
| 479 |
+
info=f"Clamped to {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps"
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 483 |
+
video_negative_prompt = gr.Textbox(
|
| 484 |
+
label="Negative Prompt",
|
| 485 |
+
value=default_negative_prompt,
|
| 486 |
+
lines=3
|
| 487 |
+
)
|
| 488 |
+
video_seed = gr.Slider(
|
| 489 |
+
label="Seed",
|
| 490 |
+
minimum=0,
|
| 491 |
+
maximum=MAX_SEED,
|
| 492 |
+
step=1,
|
| 493 |
+
value=42
|
| 494 |
+
)
|
| 495 |
+
randomize_seed = gr.Checkbox(
|
| 496 |
+
label="Randomize seed",
|
| 497 |
+
value=True
|
| 498 |
+
)
|
| 499 |
+
steps_slider = gr.Slider(
|
| 500 |
+
minimum=1,
|
| 501 |
+
maximum=30,
|
| 502 |
+
step=1,
|
| 503 |
+
value=6,
|
| 504 |
+
label="Inference Steps"
|
| 505 |
+
)
|
| 506 |
+
guidance_1 = gr.Slider(
|
| 507 |
+
minimum=0.0,
|
| 508 |
+
maximum=10.0,
|
| 509 |
+
step=0.5,
|
| 510 |
+
value=1,
|
| 511 |
+
label="Guidance Scale - High Noise"
|
| 512 |
+
)
|
| 513 |
+
guidance_2 = gr.Slider(
|
| 514 |
+
minimum=0.0,
|
| 515 |
+
maximum=10.0,
|
| 516 |
+
step=0.5,
|
| 517 |
+
value=1,
|
| 518 |
+
label="Guidance Scale - Low Noise"
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
generate_video_btn = gr.Button(
|
| 522 |
+
"Generate Video 🎬",
|
| 523 |
+
variant="primary",
|
| 524 |
+
size="lg"
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
with gr.Column():
|
| 528 |
+
video_output = gr.Video(
|
| 529 |
+
label="Generated Video",
|
| 530 |
+
autoplay=True
|
| 531 |
+
)
|
| 532 |
+
video_status = gr.Textbox(
|
| 533 |
+
label="Status",
|
| 534 |
+
interactive=False,
|
| 535 |
+
lines=1,
|
| 536 |
+
elem_classes="status-text",
|
| 537 |
+
value="Ready to generate video..."
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
# Event Handlers
|
| 541 |
+
def on_image_generated(prompt, img1, img2):
|
| 542 |
+
img, status, state_img = process_images(prompt, img1, img2)
|
| 543 |
+
if img:
|
| 544 |
+
return img, status, state_img, gr.update(visible=True)
|
| 545 |
+
return img, status, state_img, gr.update(visible=False)
|
| 546 |
+
|
| 547 |
+
def send_image_to_video(img):
|
| 548 |
+
if img:
|
| 549 |
+
return img, "Image loaded! Ready to generate video."
|
| 550 |
+
return None, "No image to send."
|
| 551 |
+
|
| 552 |
+
# Image generation events
|
| 553 |
+
generate_img_btn.click(
|
| 554 |
+
fn=on_image_generated,
|
| 555 |
+
inputs=[style_prompt, image1, image2],
|
| 556 |
+
outputs=[output_image, img_status, generated_image_state, send_to_video_btn]
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
# Send to video tab
|
| 560 |
+
send_to_video_btn.click(
|
| 561 |
+
fn=send_image_to_video,
|
| 562 |
+
inputs=[generated_image_state],
|
| 563 |
+
outputs=[video_input_image, video_status]
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
# Video generation events
|
| 567 |
+
video_inputs = [
|
| 568 |
+
video_input_image, video_prompt, steps_slider,
|
| 569 |
+
video_negative_prompt, duration_input,
|
| 570 |
+
guidance_1, guidance_2, video_seed, randomize_seed
|
| 571 |
+
]
|
| 572 |
+
|
| 573 |
+
def generate_video_wrapper(*args):
|
| 574 |
+
try:
|
| 575 |
+
video_path, seed, status = generate_video(*args)
|
| 576 |
+
return video_path, seed, status
|
| 577 |
+
except Exception as e:
|
| 578 |
+
return None, args[7], f"Error: {str(e)}"
|
| 579 |
+
|
| 580 |
+
generate_video_btn.click(
|
| 581 |
+
fn=generate_video_wrapper,
|
| 582 |
+
inputs=video_inputs,
|
| 583 |
+
outputs=[video_output, video_seed, video_status]
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
# Examples for image generation
|
| 587 |
+
gr.Examples(
|
| 588 |
+
examples=[
|
| 589 |
+
["Create a dreamy watercolor style with soft pastels", "examples/photo1.jpg", None],
|
| 590 |
+
["Transform into cyberpunk neon aesthetic", "examples/photo2.jpg", "examples/style.jpg"],
|
| 591 |
+
["Make it look like Studio Ghibli animation", "examples/landscape.jpg", None],
|
| 592 |
+
],
|
| 593 |
+
inputs=[style_prompt, image1, image2],
|
| 594 |
+
outputs=[output_image, img_status],
|
| 595 |
+
fn=process_images,
|
| 596 |
+
cache_examples=False
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
# Launch
|
| 600 |
+
if __name__ == "__main__":
|
| 601 |
+
# Try to initialize video pipeline on startup
|
| 602 |
+
try:
|
| 603 |
+
initialize_video_pipeline()
|
| 604 |
+
except:
|
| 605 |
+
print("Video pipeline initialization deferred to first use")
|
| 606 |
+
|
| 607 |
+
demo.launch(
|
| 608 |
+
share=True,
|
| 609 |
+
server_name="0.0.0.0",
|
| 610 |
+
server_port=7860
|
| 611 |
+
)
|