Spaces:
Paused
Paused
import gradio as gr | |
import replicate | |
import os | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
import tempfile | |
import base64 | |
import spaces | |
import torch | |
import numpy as np | |
import random | |
import gc | |
import time | |
# =========================== | |
# Configuration | |
# =========================== | |
# Set up Replicate API key | |
os.environ['REPLICATE_API_TOKEN'] = os.getenv('REPLICATE_API_TOKEN') | |
# Video Model Configuration | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 16 | |
default_prompt_i2v = "make this image come alive, smooth animation, cinematic motion" | |
default_negative_prompt = "static, still, blurry, low quality, distorted" | |
# =========================== | |
# Helper Functions | |
# =========================== | |
def check_api_token(): | |
"""Check if Replicate API token is set""" | |
token = os.getenv('REPLICATE_API_TOKEN') | |
return token is not None and token.strip() != "" | |
def upload_image_to_hosting(image): | |
"""Upload image to hosting service - exact same as example""" | |
# Method 1: Try imgbb.com (most reliable) | |
try: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
buffered.seek(0) | |
img_base64 = base64.b64encode(buffered.getvalue()).decode() | |
response = requests.post( | |
"https://api.imgbb.com/1/upload", | |
data={ | |
'key': '6d207e02198a847aa98d0a2a901485a5', | |
'image': img_base64, | |
} | |
) | |
if response.status_code == 200: | |
data = response.json() | |
if data.get('success'): | |
return data['data']['url'] | |
except: | |
pass | |
# Method 2: Try 0x0.st (simple and reliable) | |
try: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
buffered.seek(0) | |
files = {'file': ('image.png', buffered, 'image/png')} | |
response = requests.post("https://0x0.st", files=files) | |
if response.status_code == 200: | |
return response.text.strip() | |
except: | |
pass | |
# Method 3: Fallback to base64 | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
buffered.seek(0) | |
img_base64 = base64.b64encode(buffered.getvalue()).decode() | |
return f"data:image/png;base64,{img_base64}" | |
# =========================== | |
# Image Generation with google/nano-banana | |
# =========================== | |
def process_images(prompt, image1, image2=None): | |
"""Process images using google/nano-banana model - exact same logic as example""" | |
if not image1: | |
return None, "Please upload at least one image", None | |
if not check_api_token(): | |
return None, "⚠️ Please set REPLICATE_API_TOKEN in Space settings", None | |
try: | |
image_urls = [] | |
# Upload images | |
url1 = upload_image_to_hosting(image1) | |
image_urls.append(url1) | |
if image2: | |
url2 = upload_image_to_hosting(image2) | |
image_urls.append(url2) | |
print(f"Running google/nano-banana with prompt: {prompt}") | |
print(f"Image URLs: {image_urls}") | |
# Run the model - exactly as in example | |
output = replicate.run( | |
"google/nano-banana", | |
input={ | |
"prompt": prompt, | |
"image_input": image_urls | |
} | |
) | |
if output is None: | |
return None, "No output received", None | |
# Get the generated image - exact same handling as example | |
img = None | |
# Try method 1 | |
try: | |
if hasattr(output, 'read'): | |
img_data = output.read() | |
img = Image.open(BytesIO(img_data)) | |
except: | |
pass | |
# Try method 2 | |
if img is None: | |
try: | |
if hasattr(output, 'url'): | |
output_url = output.url() | |
response = requests.get(output_url, timeout=30) | |
if response.status_code == 200: | |
img = Image.open(BytesIO(response.content)) | |
except: | |
pass | |
# Try method 3 | |
if img is None: | |
output_url = None | |
if isinstance(output, str): | |
output_url = output | |
elif isinstance(output, list) and len(output) > 0: | |
output_url = output[0] | |
if output_url: | |
response = requests.get(output_url, timeout=30) | |
if response.status_code == 200: | |
img = Image.open(BytesIO(response.content)) | |
if img: | |
return img, "✨ Image generated successfully! You can now create a video.", img | |
else: | |
return None, "Could not process output", None | |
except Exception as e: | |
error_msg = str(e) | |
print(f"Error in process_images: {error_msg}") | |
if "authentication" in error_msg.lower(): | |
return None, "❌ Invalid API token. Please check your REPLICATE_API_TOKEN.", None | |
elif "rate limit" in error_msg.lower(): | |
return None, "⏳ Rate limit reached. Please try again later.", None | |
else: | |
return None, f"Error: {str(e)[:100]}", None | |
# =========================== | |
# Video Generation Functions | |
# =========================== | |
def resize_image_for_video(image: Image.Image, target_width=None, target_height=None): | |
"""Resize image for video generation while maintaining aspect ratio""" | |
# Convert RGBA to RGB | |
if image.mode == 'RGBA': | |
background = Image.new('RGB', image.size, (255, 255, 255)) | |
background.paste(image, mask=image.split()[3]) | |
image = background | |
elif image.mode != 'RGB': | |
image = image.convert('RGB') | |
# Get original dimensions | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# If no target dimensions specified, use original aspect ratio with constraints | |
if target_width is None or target_height is None: | |
# Determine if landscape or portrait | |
if aspect_ratio > 1: # Landscape | |
target_width = min(1024, orig_width) | |
target_height = int(target_width / aspect_ratio) | |
else: # Portrait or square | |
target_height = min(1024, orig_height) | |
target_width = int(target_height * aspect_ratio) | |
# Ensure dimensions are divisible by 8 (required by many models) | |
target_width = (target_width // 8) * 8 | |
target_height = (target_height // 8) * 8 | |
# Minimum size constraints | |
target_width = max(256, target_width) | |
target_height = max(256, target_height) | |
# Resize image | |
resized = image.resize((target_width, target_height), Image.LANCZOS) | |
return resized, target_width, target_height | |
def generate_video_gpu( | |
input_image, | |
prompt, | |
steps, | |
negative_prompt, | |
duration_seconds, | |
seed, | |
randomize_seed, | |
maintain_aspect_ratio | |
): | |
"""GPU-accelerated video generation""" | |
try: | |
# Clear GPU memory | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Simulate processing | |
time.sleep(2) | |
return None, seed, "🎬 GPU test completed successfully" | |
except Exception as e: | |
return None, seed, f"GPU Error: {str(e)[:200]}" | |
def generate_video_replicate( | |
input_image, | |
prompt, | |
steps=30, | |
negative_prompt="", | |
duration_seconds=2.0, | |
seed=42, | |
randomize_seed=False, | |
maintain_aspect_ratio=True | |
): | |
"""Generate video using Replicate API with aspect ratio preservation""" | |
if not check_api_token(): | |
return None, seed, "⚠️ Please set REPLICATE_API_TOKEN" | |
if input_image is None: | |
return None, seed, "Please provide an input image" | |
try: | |
# Get image dimensions while maintaining aspect ratio | |
if maintain_aspect_ratio: | |
resized_image, video_width, video_height = resize_image_for_video(input_image) | |
print(f"Video dimensions: {video_width}x{video_height} (maintaining aspect ratio)") | |
else: | |
# Default landscape dimensions | |
resized_image, video_width, video_height = resize_image_for_video(input_image, 768, 512) | |
print(f"Video dimensions: {video_width}x{video_height} (fixed landscape)") | |
# Upload image | |
img_url = upload_image_to_hosting(resized_image) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
print("Generating video with Stable Video Diffusion...") | |
# Use Stable Video Diffusion | |
output = replicate.run( | |
"stability-ai/stable-video-diffusion:3f0457e4619daac51203dedb472816fd4af51f3149fa7a9e0b5ffcf1b8172438", | |
input={ | |
"input_image": img_url, | |
"frames_per_second": FIXED_FPS, | |
"motion_bucket_id": 127, # Controls motion amount (0-255) | |
"cond_aug": 0.02, # Conditioning augmentation | |
"decoding_t": min(14, int(duration_seconds * 7)), # Number of frames | |
"seed": current_seed, | |
"sizing_strategy": "maintain_aspect_ratio" # Preserve aspect ratio | |
} | |
) | |
if output: | |
# Download video | |
video_url = output if isinstance(output, str) else str(output) | |
response = requests.get(video_url, timeout=60) | |
if response.status_code == 200: | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_video: | |
tmp_video.write(response.content) | |
return tmp_video.name, current_seed, f"🎬 Video generated! ({video_width}x{video_height})" | |
return None, seed, "Failed to generate video" | |
except Exception as e: | |
error_msg = str(e) | |
if "authentication" in error_msg.lower(): | |
return None, seed, "❌ Invalid API token" | |
else: | |
return None, seed, f"Error: {error_msg[:200]}" | |
# =========================== | |
# Enhanced CSS (same as example) | |
# =========================== | |
css = """ | |
.gradio-container { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif; | |
min-height: 100vh; | |
} | |
.header-container { | |
background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%); | |
padding: 2.5rem; | |
border-radius: 24px; | |
margin-bottom: 2.5rem; | |
box-shadow: 0 20px 60px rgba(255, 179, 71, 0.25); | |
} | |
.logo-text { | |
font-size: 3.5rem; | |
font-weight: 900; | |
color: #2d3436; | |
text-align: center; | |
margin: 0; | |
letter-spacing: -2px; | |
} | |
.subtitle { | |
color: #2d3436; | |
text-align: center; | |
font-size: 1.2rem; | |
margin-top: 0.5rem; | |
opacity: 0.9; | |
font-weight: 600; | |
} | |
.main-content { | |
background: rgba(255, 255, 255, 0.95); | |
backdrop-filter: blur(20px); | |
border-radius: 24px; | |
padding: 2.5rem; | |
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08); | |
margin-bottom: 2rem; | |
} | |
.gr-button-primary { | |
background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%) !important; | |
border: none !important; | |
color: #2d3436 !important; | |
font-weight: 700 !important; | |
font-size: 1.1rem !important; | |
padding: 1.2rem 2rem !important; | |
border-radius: 14px !important; | |
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important; | |
text-transform: uppercase; | |
letter-spacing: 1px; | |
width: 100%; | |
margin-top: 1rem !important; | |
} | |
.gr-button-primary:hover { | |
transform: translateY(-3px) !important; | |
box-shadow: 0 15px 40px rgba(255, 179, 71, 0.35) !important; | |
} | |
.gr-button-secondary { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
border: none !important; | |
color: white !important; | |
font-weight: 700 !important; | |
font-size: 1.1rem !important; | |
padding: 1.2rem 2rem !important; | |
border-radius: 14px !important; | |
} | |
.section-title { | |
font-size: 1.8rem; | |
font-weight: 800; | |
color: #2d3436; | |
margin-bottom: 1rem; | |
padding-bottom: 0.5rem; | |
border-bottom: 3px solid #ffd93d; | |
} | |
.status-text { | |
font-family: 'SF Mono', 'Monaco', monospace; | |
color: #00b894; | |
font-size: 0.9rem; | |
} | |
.image-container { | |
border-radius: 14px !important; | |
overflow: hidden; | |
border: 2px solid #e1e8ed !important; | |
background: #fafbfc !important; | |
} | |
footer { | |
display: none !important; | |
} | |
""" | |
# =========================== | |
# Gradio Interface | |
# =========================== | |
def create_interface(): | |
with gr.Blocks(css=css, theme=gr.themes.Base()) as demo: | |
# Shared state | |
generated_image_state = gr.State(None) | |
# Header | |
with gr.Column(elem_classes="header-container"): | |
gr.HTML(""" | |
<h1 class="logo-text">🍌 Nano Banana VIDEO</h1> | |
<p class="subtitle">AI-Powered Image Style Transfer</p> | |
<div style="display: flex; justify-content: center; align-items: center; gap: 10px; margin-top: 20px;"> | |
<a href="https://huggingface.co/spaces/ginigen/Nano-Banana-PRO" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=PRO&color=%230000ff&labelColor=%23800080&logo=HUGGINGFACE&logoColor=white&style=for-the-badge" alt="badge"> | |
</a> | |
<a href="https://huggingface.co/spaces/openfree/Nano-Banana-Upscale" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=UPSCALE&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Nano Banana Upscale"> | |
</a> | |
<a href="https://huggingface.co/spaces/openfree/Free-Nano-Banana" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=FREE&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Free Nano Banana"> | |
</a> | |
<a href="https://huggingface.co/spaces/aiqtech/Nano-Banana-API" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=API&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Nano Banana API"> | |
</a> | |
<a href="https://discord.gg/openfreeai" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord Openfree AI"> | |
</a> | |
</div> | |
""") | |
# API Token Status | |
with gr.Row(): | |
gr.HTML(f""" | |
<div class="status-box" style="background: {'#d4edda' if check_api_token() else '#f8d7da'}; | |
color: {'#155724' if check_api_token() else '#721c24'}; | |
padding: 12px; border-radius: 10px; margin: 15px 0;"> | |
<b>API Status:</b> {'✅ Token configured' if check_api_token() else '❌ Token missing - Add REPLICATE_API_TOKEN in Settings > Repository secrets'} | |
</div> | |
""") | |
# Tabs | |
with gr.Tabs(): | |
# Tab 1: Image Generation | |
with gr.TabItem("🎨 Step 1: Generate Image"): | |
with gr.Column(elem_classes="main-content"): | |
gr.HTML('<h2 class="section-title">🎨 Image Style Transfer</h2>') | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
style_prompt = gr.Textbox( | |
label="Style Description", | |
placeholder="Describe your style...", | |
lines=3, | |
value="Make the sheets in the style of the logo. Make the scene natural.", | |
) | |
with gr.Row(equal_height=True): | |
image1 = gr.Image( | |
label="Primary Image", | |
type="pil", | |
height=200, | |
elem_classes="image-container" | |
) | |
image2 = gr.Image( | |
label="Secondary Image (Optional)", | |
type="pil", | |
height=200, | |
elem_classes="image-container" | |
) | |
generate_img_btn = gr.Button( | |
"Generate Magic ✨", | |
variant="primary", | |
size="lg" | |
) | |
with gr.Column(scale=1): | |
output_image = gr.Image( | |
label="Generated Result", | |
type="pil", | |
height=420, | |
elem_classes="image-container" | |
) | |
img_status = gr.Textbox( | |
label="Status", | |
interactive=False, | |
lines=1, | |
elem_classes="status-text", | |
value="Ready to generate..." | |
) | |
send_to_video_btn = gr.Button( | |
"Send to Video Generation →", | |
variant="secondary", | |
size="lg", | |
visible=False | |
) | |
# Tab 2: Video Generation | |
with gr.TabItem("🎬 Step 2: Generate Video"): | |
with gr.Column(elem_classes="main-content"): | |
gr.HTML('<h2 class="section-title">🎬 Video Generation from Image</h2>') | |
with gr.Row(): | |
with gr.Column(): | |
video_input_image = gr.Image( | |
type="pil", | |
label="Input Image (from Step 1 or upload new)", | |
elem_classes="image-container" | |
) | |
video_prompt = gr.Textbox( | |
label="Animation Prompt", | |
value=default_prompt_i2v, | |
lines=3 | |
) | |
with gr.Row(): | |
duration_input = gr.Slider( | |
minimum=1.0, | |
maximum=4.0, | |
step=0.5, | |
value=2.0, | |
label="Duration (seconds)" | |
) | |
maintain_aspect = gr.Checkbox( | |
label="Maintain Original Aspect Ratio", | |
value=True | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
video_negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value=default_negative_prompt, | |
lines=3 | |
) | |
video_seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42 | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize seed", | |
value=True | |
) | |
steps_slider = gr.Slider( | |
minimum=10, | |
maximum=50, | |
step=5, | |
value=30, | |
label="Quality Steps" | |
) | |
generate_video_btn = gr.Button( | |
"Generate Video 🎬", | |
variant="primary", | |
size="lg" | |
) | |
with gr.Column(): | |
video_output = gr.Video( | |
label="Generated Video", | |
autoplay=True | |
) | |
video_status = gr.Textbox( | |
label="Status", | |
interactive=False, | |
lines=1, | |
elem_classes="status-text", | |
value="Ready to generate video..." | |
) | |
# Event Handlers | |
def on_image_generated(prompt, img1, img2): | |
img, status, state_img = process_images(prompt, img1, img2) | |
if img: | |
return img, status, state_img, gr.update(visible=True) | |
return img, status, state_img, gr.update(visible=False) | |
def send_image_to_video(img): | |
if img: | |
return img, "Image loaded! Ready to generate video." | |
return None, "No image to send." | |
# Image generation events | |
generate_img_btn.click( | |
fn=on_image_generated, | |
inputs=[style_prompt, image1, image2], | |
outputs=[output_image, img_status, generated_image_state, send_to_video_btn] | |
) | |
# Send to video tab | |
send_to_video_btn.click( | |
fn=send_image_to_video, | |
inputs=[generated_image_state], | |
outputs=[video_input_image, video_status] | |
) | |
# Video generation events | |
generate_video_btn.click( | |
fn=generate_video_replicate, | |
inputs=[ | |
video_input_image, | |
video_prompt, | |
steps_slider, | |
video_negative_prompt, | |
duration_input, | |
video_seed, | |
randomize_seed, | |
maintain_aspect | |
], | |
outputs=[video_output, video_seed, video_status] | |
) | |
return demo | |
# Launch | |
if __name__ == "__main__": | |
print("=" * 50) | |
print("Starting Nano Banana + Video Application") | |
print("=" * 50) | |
if check_api_token(): | |
print("✅ Replicate API token found") | |
else: | |
print("⚠️ REPLICATE_API_TOKEN not found") | |
print("Please add it in Settings > Repository secrets") | |
print("=" * 50) | |
# Create and launch the interface | |
demo = create_interface() | |
demo.launch( | |
show_error=True, | |
share=False | |
) |