File size: 22,115 Bytes
ee8573c
b226a7a
ee8573c
a2a7c32
ee8573c
 
 
 
 
a2a7c32
 
ee8573c
a2a7c32
a46f87e
 
a2a7c32
a46f87e
351b6ed
ee8573c
a2a7c32
 
 
 
03990e9
 
 
 
 
c8ebd5b
03990e9
 
c8ebd5b
a2a7c32
03990e9
 
 
 
5153322
a2a7c32
5153322
 
 
03990e9
 
 
c8ebd5b
5153322
c8ebd5b
03990e9
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
 
 
c8ebd5b
03990e9
 
 
 
 
 
 
 
16a7de0
03990e9
4e87cdd
8ed7188
 
 
 
03990e9
 
8ed7188
 
03990e9
 
6d80425
03990e9
 
 
 
5d67b89
a2a7c32
03990e9
 
 
a2a7c32
03990e9
 
 
 
 
 
 
 
 
 
 
 
a2a7c32
03990e9
 
 
 
4e87cdd
03990e9
 
351b6ed
03990e9
 
 
 
 
 
 
 
 
 
 
5153322
 
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
5153322
5d67b89
 
 
 
0f7efec
5153322
5566586
 
03990e9
5153322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a7c32
5153322
 
 
 
03990e9
 
c8ebd5b
5153322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a7c32
5153322
 
 
 
 
 
 
 
 
 
 
 
03990e9
5153322
a2a7c32
5153322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
5153322
03990e9
 
 
 
 
 
5153322
03990e9
 
 
 
 
 
5153322
03990e9
5153322
 
03990e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5153322
03990e9
 
 
5153322
03990e9
 
 
 
 
 
 
 
 
a2a7c32
5153322
 
 
 
 
 
 
 
03990e9
 
 
5153322
03990e9
 
5153322
03990e9
b4e548c
03990e9
 
 
 
 
 
 
 
 
c7ee98c
5b0c1dc
03990e9
9770fc5
5153322
 
 
 
 
 
 
9770fc5
 
 
5153322
 
 
 
 
 
 
 
 
 
 
 
 
03990e9
5153322
03990e9
 
 
 
 
 
 
a2a7c32
03990e9
 
 
 
 
 
a2a7c32
03990e9
5153322
03990e9
 
 
5153322
03990e9
a2a7c32
5153322
a2a7c32
c8ebd5b
03990e9
 
5153322
a2a7c32
03990e9
a2a7c32
 
 
03990e9
a2a7c32
 
 
03990e9
a2a7c32
03990e9
 
a2a7c32
 
03990e9
a2a7c32
03990e9
 
 
a2a7c32
03990e9
5153322
03990e9
5153322
 
 
 
 
 
 
 
99924e1
5153322
a2a7c32
5153322
 
 
 
5d67b89
03990e9
5d67b89
 
03990e9
 
a2a7c32
03990e9
 
 
 
 
974f017
c8ebd5b
 
03990e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import subprocess
import os

# ํ•„์ˆ˜ ํŒจํ‚ค์ง€ ์„ค์น˜ (์ด๋ฏธ ์„ค์น˜๋˜์–ด ์žˆ๋‹ค๋ฉด ๋ฌด์‹œ๋ฉ๋‹ˆ๋‹ค)
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)
subprocess.run("pip install huggingface_hub==0.25.0", shell=True)
subprocess.run("pip install numpy==1.26.4 sentencepiece sacremoses transformers gradio safetensors torchvision diffusers", shell=True)

# ์ฒดํฌํฌ์ธํŠธ ํด๋” ์ƒ์„ฑ ๋ฐ ๋ชจ๋ธ ์Šค๋ƒ…์ƒท ๋‹ค์šด๋กœ๋“œ
os.makedirs("/home/user/app/checkpoints", exist_ok=True)
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Alpha-VLLM/Lumina-Image-2.0", local_dir="/home/user/app/checkpoints")

hf_token = os.environ["HF_TOKEN"]

# โ˜… ์ค‘์š”: CUDA ์ดˆ๊ธฐํ™” ์ „์— spaces ํŒจํ‚ค์ง€๋ฅผ ์ž„ํฌํŠธํ•ฉ๋‹ˆ๋‹ค.
import spaces

# ์ด์ œ CUDA์™€ ๊ด€๋ จ๋œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋“ค์„ ์ž„ํฌํŠธํ•ฉ๋‹ˆ๋‹ค.
import argparse
import builtins
import json
import math
import multiprocessing as mp
import random
import socket
import traceback

import torch
import gradio as gr
import numpy as np
from safetensors.torch import load_file
from torchvision.transforms.functional import to_pil_image

# ๋ฒˆ์—ญ ํŒŒ์ดํ”„๋ผ์ธ (ํ•œ๊ธ€ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์˜์–ด๋กœ ๋ฒˆ์—ญ)
from transformers import pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

from imgproc import generate_crop_size_list
import models
from transport import Sampler, create_transport

from multiprocessing import Process, Queue, set_start_method, get_context

class ModelFailure:
    pass

# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True):
    captions = []
    for caption in prompt_batch:
        if random.random() < proportion_empty_prompts:
            captions.append("")
        elif isinstance(caption, str):
            captions.append(caption)
        elif isinstance(caption, (list, np.ndarray)):
            captions.append(random.choice(caption) if is_train else caption[0])

    with torch.no_grad():
        text_inputs = tokenizer(
            captions,
            padding=True,
            pad_to_multiple_of=8,
            max_length=256,
            truncation=True,
            return_tensors="pt",
        )

        print(f"Text Encoder Device: {text_encoder.device}")
        text_input_ids = text_inputs.input_ids.cuda()
        prompt_masks = text_inputs.attention_mask.cuda()
        print(f"Text Input Ids Device: {text_input_ids.device}")
        print(f"Prompt Masks Device: {prompt_masks.device}")

        prompt_embeds = text_encoder(
            input_ids=text_input_ids,
            attention_mask=prompt_masks,
            output_hidden_states=True,
        ).hidden_states[-2]
        text_encoder.cpu()

    return prompt_embeds, prompt_masks

@torch.no_grad()
def model_main(args, master_port, rank):
    # diffusers, transformers ๋“ฑ์˜ ๋‚ด๋ถ€ ์ž„ํฌํŠธ๋ฅผ ์œ„ํ•ด ํ•จ์ˆ˜ ๋‚ด๋ถ€์—์„œ ์ž„ํฌํŠธํ•ฉ๋‹ˆ๋‹ค.
    from diffusers.models import AutoencoderKL
    from transformers import AutoModel, AutoTokenizer

    # ๊ธฐ๋ณธ print ํ•จ์ˆ˜๋ฅผ ์˜ค๋ฒ„๋ผ์ด๋“œํ•˜์—ฌ ์ถœ๋ ฅ ์ง€์—ฐ์„ ์ตœ์†Œํ™”ํ•ฉ๋‹ˆ๋‹ค.
    original_print = builtins.print
    def print(*args, **kwargs):
        kwargs.setdefault("flush", True)
        original_print(*args, **kwargs)
    builtins.print = print

    train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
    print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))

    print(f"Creating lm: Gemma-2-2B")
    dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[args.precision]

    text_encoder = AutoModel.from_pretrained("google/gemma-2-2b", torch_dtype=dtype, token=hf_token).eval().to("cuda")
    cap_feat_dim = text_encoder.config.hidden_size
    if args.num_gpus > 1:
        raise NotImplementedError("Inference with >1 GPUs not yet supported")

    tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b", token=hf_token)
    tokenizer.padding_side = "right"

    vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", token=hf_token).cuda()

    print(f"Creating DiT: {train_args.model}")
    model = models.__dict__[train_args.model](
        in_channels=16,
        qk_norm=train_args.qk_norm,
        cap_feat_dim=cap_feat_dim,
    )
    model.eval().to("cuda", dtype=dtype)

    assert train_args.model_parallel_size == args.num_gpus
    if args.ema:
        print("Loading EMA model.")
    print('Loading model weights...')
    ckpt_path = os.path.join(
        args.ckpt,
        f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.safetensors",
    )
    if os.path.exists(ckpt_path):
        ckpt = load_file(ckpt_path)
    else:
        ckpt_path = os.path.join(
            args.ckpt,
            f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.pth",
        )
        assert os.path.exists(ckpt_path)
        ckpt = torch.load(ckpt_path, map_location="cuda")
    model.load_state_dict(ckpt, strict=True)
    print('Model weights loaded.')
    
    return text_encoder, tokenizer, vae, model

@torch.no_grad()
def inference(args, infer_args, text_encoder, tokenizer, vae, model):
    dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[args.precision]
    train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
    torch.cuda.set_device(0)
    with torch.autocast("cuda", dtype):
        (
            cap,
            neg_cap,
            system_type,
            resolution,
            num_sampling_steps,
            cfg_scale,
            cfg_trunc,
            renorm_cfg,
            solver,
            t_shift,
            seed,
            scaling_method,
            scaling_watershed,
            proportional_attn,
        ) = infer_args

        system_prompt = system_type
        cap = system_prompt + cap
        if neg_cap != "":
            neg_cap = system_prompt + neg_cap

        metadata = dict(
            real_cap=cap,
            real_neg_cap=neg_cap,
            system_type=system_type,
            resolution=resolution,
            num_sampling_steps=num_sampling_steps,
            cfg_scale=cfg_scale,
            cfg_trunc=cfg_trunc,
            renorm_cfg=renorm_cfg,
            solver=solver,
            t_shift=t_shift,
            seed=seed,
            scaling_method=scaling_method,
            scaling_watershed=scaling_watershed,
            proportional_attn=proportional_attn,
        )
        print("> Parameters:", json.dumps(metadata, indent=2))

        try:
            # ์ƒ˜ํ”Œ๋Ÿฌ ์„ค์ •
            if solver == "dpm":
                transport = create_transport("Linear", "velocity")
                sampler = Sampler(transport)
                sample_fn = sampler.sample_dpm(
                    model.forward_with_cfg,
                    model_kwargs=model_kwargs,
                )
            else:
                transport = create_transport(
                    args.path_type,
                    args.prediction,
                    args.loss_weight,
                    args.train_eps,
                    args.sample_eps,
                )
                sampler = Sampler(transport)
                sample_fn = sampler.sample_ode(
                    sampling_method=solver,
                    num_steps=num_sampling_steps,
                    atol=args.atol,
                    rtol=args.rtol,
                    reverse=args.reverse,
                    time_shifting_factor=t_shift,
                )
            # ํ•ด์ƒ๋„ ๋ฐ latent ๊ณต๊ฐ„ ํฌ๊ธฐ ๊ณ„์‚ฐ
            resolution = resolution.split(" ")[-1]
            w, h = resolution.split("x")
            w, h = int(w), int(h)
            latent_w, latent_h = w // 8, h // 8
            if int(seed) != 0:
                torch.random.manual_seed(int(seed))
            z = torch.randn([1, 16, latent_h, latent_w], device="cuda").to(dtype)
            z = z.repeat(2, 1, 1, 1)

            with torch.no_grad():
                if neg_cap != "":
                    cap_feats, cap_mask = encode_prompt([cap] + [neg_cap], text_encoder, tokenizer, 0.0)
                else:
                    cap_feats, cap_mask = encode_prompt([cap] + [""], text_encoder, tokenizer, 0.0)
               
            cap_mask = cap_mask.to(cap_feats.device)

            model_kwargs = dict(
                cap_feats=cap_feats,
                cap_mask=cap_mask,
                cfg_scale=cfg_scale,
                cfg_trunc=1 - cfg_trunc,
                renorm_cfg=renorm_cfg,
            )

            print(f"> Caption: {cap}")
            print(f"> Number of sampling steps: {num_sampling_steps}")
            print(f"> CFG scale: {cfg_scale}")
            print("> Starting sampling...")
            if solver == "dpm":
                samples = sample_fn(z, steps=num_sampling_steps, order=2, skip_type="time_uniform_flow", method="multistep", flow_shift=t_shift)
            else:
                samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
            samples = samples[:1]
            print("Sample dtype:", samples.dtype)

            vae_scale = {
                "sdxl": 0.13025,
                "sd3": 1.5305,
                "ema": 0.18215,
                "mse": 0.18215,
                "cogvideox": 1.15258426,
                "flux": 0.3611,
            }["flux"]
            vae_shift = {
                "sdxl": 0.0,
                "sd3": 0.0609,
                "ema": 0.0,
                "mse": 0.0,
                "cogvideox": 0.0,
                "flux": 0.1159,
            }["flux"]
            print(f"> VAE scale: {vae_scale}, shift: {vae_shift}")
            print("Samples shape:", samples.shape)
            samples = vae.decode(samples / vae_scale + vae_shift).sample
            samples = (samples + 1.0) / 2.0
            samples.clamp_(0.0, 1.0)

            img = to_pil_image(samples[0].float())
            print("> Generated image successfully.")

            return img, metadata
        except Exception:
            print(traceback.format_exc())
            return ModelFailure()

def none_or_str(value):
    if value == "None":
        return None
    return value

def parse_transport_args(parser):
    group = parser.add_argument_group("Transport arguments")
    group.add_argument(
        "--path-type",
        type=str,
        default="Linear",
        choices=["Linear", "GVP", "VP"],
        help="Type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).",
    )
    group.add_argument(
        "--prediction",
        type=str,
        default="velocity",
        choices=["velocity", "score", "noise"],
        help="Prediction model for the transport dynamics.",
    )
    group.add_argument(
        "--loss-weight",
        type=none_or_str,
        default=None,
        choices=[None, "velocity", "likelihood"],
        help="Weighting of different loss components: 'velocity', 'likelihood', or None.",
    )
    group.add_argument("--sample-eps", type=float, help="Sampling parameter in the transport model.")
    group.add_argument("--train-eps", type=float, help="Training epsilon to stabilize learning.")

def parse_ode_args(parser):
    group = parser.add_argument_group("ODE arguments")
    group.add_argument(
        "--atol",
        type=float,
        default=1e-6,
        help="Absolute tolerance for the ODE solver.",
    )
    group.add_argument(
        "--rtol",
        type=float,
        default=1e-3,
        help="Relative tolerance for the ODE solver.",
    )
    group.add_argument("--reverse", action="store_true", help="Run the ODE solver in reverse.")
    group.add_argument(
        "--likelihood",
        action="store_true",
        help="Enable likelihood calculation during the ODE solving process.",
    )

def find_free_port() -> int:
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    port = sock.getsockname()[1]
    sock.close()
    return port

# ํ•œ๊ธ€ ํ”„๋กฌํ”„ํŠธ๊ฐ€ ๊ฐ์ง€๋˜๋ฉด ์˜์–ด๋กœ ๋ฒˆ์—ญํ•˜๋Š” ํ•จ์ˆ˜
def translate_if_korean(text: str) -> str:
    import re
    if re.search(r"[ใ„ฑ-ใ…Žใ…-ใ…ฃ๊ฐ€-ํžฃ]", text):
        print("Translating Korean prompt to English...")
        translation = translator(text)
        return translation[0]["translation_text"]
    return text

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--num_gpus", type=int, default=1)
    parser.add_argument("--ckpt", type=str, default='/home/user/app/checkpoints', required=False)
    parser.add_argument("--ema", action="store_true")
    parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"])
    parser.add_argument("--hf_token", type=str, default=None, help="Hugging Face read token for accessing gated repo.")
    parser.add_argument("--res", type=int, default=1024, choices=[256, 512, 1024])
    parser.add_argument("--port", type=int, default=12123)

    parse_transport_args(parser)
    parse_ode_args(parser)
    args = parser.parse_known_args()[0]

    if args.num_gpus != 1:
        raise NotImplementedError("Multi-GPU Inference is not yet supported")

    master_port = find_free_port()
    text_encoder, tokenizer, vae, model = model_main(args, master_port, 0)
    description = "Lumina-Image 2.0 ([Github](https://github.com/Alpha-VLLM/Lumina-Image-2.0/tree/main))"

    # ์ปค์Šคํ…€ CSS: ๋ฉ”๋‰ด ์ปจํ…Œ์ด๋„ˆ์˜ ๋„ˆ๋น„๋ฅผ ์ค„์ด๊ณ , ๋ฐฐ๊ฒฝ์ด ์ž˜ ๋ณด์ด๋„๋ก ๋ฐ˜ํˆฌ๋ช… ๋ฐฐ๊ฒฝ์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.
    custom_css = """
    body {
        background: linear-gradient(135deg, #1a2a6c, #b21f1f, #fdbb2d);
        font-family: 'Helvetica', sans-serif;
        color: #333;
    }
    .gradio-container {
        background: rgba(255, 255, 255, 0.85); /* ๋ฐ˜ํˆฌ๋ช… ๋ฐฐ๊ฒฝ */
        max-width: 800px;               /* ์ปจํ…Œ์ด๋„ˆ ์ตœ๋Œ€ ๋„ˆ๋น„ ์กฐ์ • */
        margin: 20px auto;              /* ์ค‘์•™ ์ •๋ ฌ */
        border-radius: 15px;
        box-shadow: 0 8px 16px rgba(0, 0, 0, 0.25);
        padding: 20px;
    }
    .gradio-title {
        font-weight: bold;
        font-size: 1.5em;
        text-align: center;
        margin-bottom: 10px;
    }
    """

    with gr.Blocks(css=custom_css) as demo:
        with gr.Row():
            gr.Markdown(f"<div class='gradio-title'>{description}</div>")
        with gr.Row():
            with gr.Column():
                cap = gr.Textbox(
                    lines=2,
                    label="Caption",
                    interactive=True,
                    value="Majestic landscape photograph of snow-capped mountains under a dramatic sky at sunset. The mountains dominate the lower half of the image, with rugged peaks and deep crevasses visible. A glacier flows down the right side, partially illuminated by the warm light. The sky is filled with fiery orange and golden clouds, contrasting with the cool tones of the snow. The central peak is partially obscured by clouds, adding a sense of mystery. The foreground features dark, shadowed forested areas, enhancing the depth. High contrast, natural lighting, warm color palette, photorealistic, expansive, awe-inspiring, serene, visually balanced, dynamic composition.",
                    placeholder="Enter a caption."
                )
                neg_cap = gr.Textbox(
                    lines=2,
                    label="Negative Caption",
                    interactive=True,
                    value="",
                    placeholder="Enter a negative caption."
                )
                default_value = "You are an assistant designed to generate high-quality images with the highest degree of image-text alignment based on textual prompts."
                system_type = gr.Dropdown(
                    value=default_value,
                    choices=[
                        "You are an assistant designed to generate high-quality images with the highest degree of image-text alignment based on textual prompts.",
                        "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts.",
                        ""
                    ],
                    label="System Type"
                )
                with gr.Row():
                    res_choices = [f"{w}x{h}" for w, h in generate_crop_size_list((args.res // 64) ** 2, 64)]
                    default_value = "1024x1024"
                    resolution = gr.Dropdown(value=default_value, choices=res_choices, label="Resolution")
                with gr.Row():
                    num_sampling_steps = gr.Slider(minimum=1, maximum=70, value=40, step=1, interactive=True, label="Sampling Steps")
                    seed = gr.Slider(minimum=0, maximum=int(1e5), value=0, step=1, interactive=True, label="Seed (0 for random)")
                    cfg_trunc = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, interactive=True, label="CFG Truncation")
                with gr.Row():
                    solver = gr.Dropdown(value="euler", choices=["euler", "midpoint", "rk4"], label="Solver")
                    t_shift = gr.Slider(minimum=1, maximum=20, value=6, step=1, interactive=True, label="Time Shift")
                    cfg_scale = gr.Slider(minimum=1.0, maximum=20.0, value=4.0, interactive=True, label="CFG Scale")
                with gr.Row():
                    renorm_cfg = gr.Dropdown(value=True, choices=[True, False, 2.0], label="CFG Renorm")
                with gr.Accordion("Advanced Settings for Resolution Extrapolation", open=False):
                    with gr.Row():
                        scaling_method = gr.Dropdown(value="Time-aware", choices=["Time-aware", "None"], label="RoPE Scaling Method")
                        scaling_watershed = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, interactive=True, label="Linear/NTK Watershed")
                    with gr.Row():
                        proportional_attn = gr.Checkbox(value=True, interactive=True, label="Proportional Attention")
                with gr.Row():
                    submit_btn = gr.Button("Submit", variant="primary")
            with gr.Column():
                output_img = gr.Image(label="Generated Image", interactive=False)
                with gr.Accordion(label="Generation Parameters", open=True):
                    gr_metadata = gr.JSON(label="Metadata", show_label=False)
        with gr.Row():
            prompts = [
                "Close-up portrait of a young woman with light brown hair, looking to the right, illuminated by warm, golden sunlight. Her hair is gently tousled, catching the light and creating a halo effect around her head. She wears a white garment with a V-neck, visible in the lower left of the frame. The background is dark and out of focus, enhancing the contrast between her illuminated face and the shadows. Soft, ethereal lighting, high contrast, warm color palette, shallow depth of field, natural backlighting, serene and contemplative mood, cinematic quality, intimate and visually striking composition.",
                "ํ•˜๋Š˜์„ ๋‚˜๋Š” ์šฉ, ์‹ ๋น„๋กœ์šด ๋ถ„์œ„๊ธฐ, ๊ตฌ๋ฆ„ ์œ„๋ฅผ ๋‚ ๋ฉฐ ๋น›๋‚˜๋Š” ๋น„๋Š˜์„ ๊ฐ€์ง„, ์ „์„ค ์†์˜ ์กด์žฌ, ๊ฐ•๋ ฌํ•œ ์ƒ‰์ฑ„์™€ ๋””ํ…Œ์ผํ•œ ๋ฌ˜์‚ฌ.",
                "Aesthetic photograph of a bouquet of pink and white ranunculus flowers in a clear glass vase, centrally positioned on a wooden surface. The flowers are in full bloom, displaying intricate layers of petals with a soft gradient from pale pink to white. The vase is filled with water, visible through the clear glass, and the stems are submerged. In the background, a blurred vase with green stems is partially visible, adding depth to the composition. The lighting is warm and natural, casting soft shadows and highlighting the delicate textures of the petals. The scene is serene and intimate, with a focus on the organic beauty of the flowers. Photorealistic, shallow depth of field, soft natural lighting, warm color palette, high contrast, glossy texture, tranquil, visually balanced.",
                "ํ•œๅชไผ˜้›…็š„็™ฝ็Œซ็ฉฟ็€ไธ€ไปถ็ดซ่‰ฒ็š„ๆ——่ข๏ผŒๆ——่ขไธŠ็ปฃๆœ‰็ฒพ่‡ด็š„็‰กไธน่Šฑๅ›พๆกˆ๏ผŒๆ˜พๅพ—้ซ˜่ดตๅ…ธ้›…ใ€‚ๅฎƒๅคดไธŠๆˆด็€ไธ€ๆœต้‡‘่‰ฒ็š„ๅ‘้ฅฐ๏ผŒๅ˜ด้‡Œๅผ็€ไธ€ๆ น่ฑกๅพๅฅฝ่ฟ็š„็บข่‰ฒไธๅธฆใ€‚ๅ‘จๅ›ด็Žฏ็ป•็€่ฎธๅคš้ฃ˜ๅŠจ็š„็บธ้นคๅ’Œ้‡‘่‰ฒ็š„ๅ…‰็‚น๏ผŒ่ฅ้€ ๅ‡บไธ€็ง็ฅฅ็‘žๅ’Œๆขฆๅนป็š„ๆฐ›ๅ›ดใ€‚่ถ…ๅ†™ๅฎž้ฃŽๆ ผใ€‚"
            ]
            prompts = [[p] for p in prompts]
            gr.Examples(prompts, [cap], label="Examples")
        @spaces.GPU(duration=200)
        def on_submit(cap, neg_cap, system_type, resolution, num_sampling_steps, cfg_scale, cfg_trunc, renorm_cfg, solver, t_shift, seed, scaling_method, scaling_watershed, proportional_attn, progress=gr.Progress(track_tqdm=True)):
            # ํ•œ๊ธ€ ํ”„๋กฌํ”„ํŠธ๊ฐ€ ๊ฐ์ง€๋˜๋ฉด ์˜์–ด๋กœ ๋ฒˆ์—ญ
            cap = translate_if_korean(cap)
            if neg_cap and neg_cap.strip():
                neg_cap = translate_if_korean(neg_cap)
            infer_args = (cap, neg_cap, system_type, resolution, num_sampling_steps, cfg_scale, cfg_trunc, renorm_cfg, solver, t_shift, seed, scaling_method, scaling_watershed, proportional_attn)
            result = inference(args, infer_args, text_encoder, tokenizer, vae, model)
            if isinstance(result, ModelFailure):
                raise RuntimeError("Model failed to generate the image.")
            return result
        submit_btn.click(
            on_submit,
            [cap, neg_cap, system_type, resolution, num_sampling_steps, cfg_scale, cfg_trunc, renorm_cfg, solver, t_shift, seed, scaling_method, scaling_watershed, proportional_attn],
            [output_img, gr_metadata],
        )
        def show_scaling_watershed(scaling_m):
            return gr.update(visible=scaling_m == "Time-aware")
        scaling_method.change(show_scaling_watershed, scaling_method, scaling_watershed)
    demo.queue().launch(server_name="0.0.0.0")

if __name__ == "__main__":
    main()