Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
class LayerNorm(nn.Module): | |
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class NormDownsample(nn.Module): | |
def __init__(self,in_ch,out_ch,scale=0.5,use_norm=False): | |
super(NormDownsample, self).__init__() | |
self.use_norm=use_norm | |
if self.use_norm: | |
self.norm=LayerNorm(out_ch) | |
self.prelu = nn.PReLU() | |
self.down = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch,kernel_size=3,stride=1, padding=1, bias=False), | |
nn.UpsamplingBilinear2d(scale_factor=scale)) | |
def forward(self, x): | |
x = self.down(x) | |
x = self.prelu(x) | |
if self.use_norm: | |
x = self.norm(x) | |
return x | |
else: | |
return x | |
class NormUpsample(nn.Module): | |
def __init__(self, in_ch,out_ch,scale=2,use_norm=False): | |
super(NormUpsample, self).__init__() | |
self.use_norm=use_norm | |
if self.use_norm: | |
self.norm=LayerNorm(out_ch) | |
self.prelu = nn.PReLU() | |
self.up_scale = nn.Sequential( | |
nn.Conv2d(in_ch,out_ch,kernel_size=3,stride=1, padding=1, bias=False), | |
nn.UpsamplingBilinear2d(scale_factor=scale)) | |
self.up = nn.Conv2d(out_ch*2,out_ch,kernel_size=1,stride=1, padding=0, bias=False) | |
def forward(self, x,y): | |
x = self.up_scale(x) | |
x = torch.cat([x, y],dim=1) | |
x = self.up(x) | |
x = self.prelu(x) | |
if self.use_norm: | |
return self.norm(x) | |
else: | |
return x | |