File size: 3,047 Bytes
3e648fb
 
 
 
 
 
 
 
 
 
729b4cc
2d65752
3e648fb
5b15317
3e648fb
 
 
729b4cc
6319557
f625260
8ced22f
3e648fb
2d65752
 
3e648fb
 
 
 
 
 
 
 
 
 
 
 
 
5b15317
 
3e648fb
 
 
8ced22f
3e648fb
8ced22f
3e648fb
8ced22f
3e648fb
 
be1e53a
2d65752
 
 
 
 
 
 
 
 
 
 
 
 
3e648fb
 
 
 
 
c9dce21
6319557
c9dce21
da0c19f
c9dce21
3e648fb
 
 
c9dce21
3e648fb
 
da0c19f
3e648fb
 
 
ff07908
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import torch
import gradio as gr
from PIL import Image
from net.CIDNet import CIDNet
import torchvision.transforms as transforms
import torch.nn.functional as F
import os
import imquality.brisque as brisque
from loss.niqe_utils import *
import spaces
import huggingface_hub

eval_net = CIDNet().cuda()
eval_net.trans.gated = True
eval_net.trans.gated2 = True

@spaces.GPU(duration=120)
def process_image(input_img,score,model_path,gamma=1.0,alpha_s=1.0,alpha_i=1.0):
    if model_path is None:
        return input_img,"Please choose a model weights."
    torch.set_grad_enabled(False)
    eval_net.from_pretrained(model_path)
    # eval_net.load_state_dict(torch.load(os.path.join(directory,model_path), map_location=lambda storage, loc: storage))
    eval_net.eval()
    
    pil2tensor = transforms.Compose([transforms.ToTensor()])
    input = pil2tensor(input_img)
    factor = 8
    h, w = input.shape[1], input.shape[2]
    H, W = ((h + factor) // factor) * factor, ((w + factor) // factor) * factor
    padh = H - h if h % factor != 0 else 0
    padw = W - w if w % factor != 0 else 0
    input = F.pad(input.unsqueeze(0), (0,padw,0,padh), 'reflect')
    with torch.no_grad():
        eval_net.trans.alpha_s = alpha_s
        eval_net.trans.alpha = alpha_i
        output = eval_net(input.cuda()**gamma)
    output = torch.clamp(output,0,1).cuda()
    output = output[:, :, :h, :w]
    enhanced_img = transforms.ToPILImage()(output.squeeze(0))
    if score == 'Yes':
        im1 = np.array(enhanced_img)
        score_niqe = calculate_niqe(im1)
        return enhanced_img,score_niqe
    else:
        return enhanced_img,0


directory = "weights"
pth_files = [
    'HVI-CIDNet-Generalization',
    'HVI-CIDNet-Sony-Total-Dark',
    'HVI-CIDNet-LOL-Blur',
    'HVI-CIDNet-SICE',
    'HVI-CIDNet-LOLv2-real-bestSSIM',
    'HVI-CIDNet-LOLv2-real-bestPSNR',
    'HVI-CIDNet-LOLv2-syn-wperc',
    'HVI-CIDNet-LOLv2-syn-woperc',
    'HVI-CIDNet-LOLv1-wperc',
    'HVI-CIDNet-LOLv1-woperc'
]


interface = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(label="Low-light Image", type="pil"),
        gr.Radio(choices=['Yes','No'],label="Image Score",info="Calculate NIQE, default is \"No\"."),
        gr.Radio(choices=pth_files2,label="Model Weights",info="Choose your model. The best models are \"SICE.pth\" and \"generalization.pth\"."),
        gr.Slider(0.1,5,label="gamma curve",step=0.01,value=1.0, info="Lower is lighter, best range is [0.5,2.5]."),
        gr.Slider(0,2,label="Alpha-s",step=0.01,value=1.0, info="Higher is more saturated."),
        gr.Slider(0.1,2,label="Alpha-i",step=0.01,value=1.0, info="Higher is lighter.")
    ],
    outputs=[
        gr.Image(label="Result", type="pil"),
        gr.Textbox(label="NIQE",info="Lower is better.")
    ],
    title="HVI-CIDNet (Low-Light Image Enhancement)",
    description="The demo of paper \"You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement\"",
    allow_flagging="never"
)

interface.launch(share=True)