import gradio as gr import numpy as np import random import torch from diffusers import DiffusionPipeline import spaces from transformers import pipeline # 기본 설정 dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # 한국어-영어 번역 모델 로드 (CPU에서 실행) translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu") # 모델 로드 pipe = DiffusionPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 # 제품 디자인 컨셉 예시 EXAMPLES = [ { "title": "Smart Coffee Machine", "prompt": """A sleek industrial design concept for a coffee machine: - Curved metallic body with minimal bezel - Touchscreen panel for settings - Modern matte black finish - Hand-drawn concept sketch style""", "width": 1024, "height": 1024 }, { "title": "AI Speaker", "prompt": """A futuristic AI speaker concept: - Cylindrical shape with LED ring near top - Voice assistant concept, floating panel controls - Smooth glossy finish with minimal seams - Techy, modern look in grayscale""", "width": 1024, "height": 1024 }, { "title": "Next-Gen Smartphone", "prompt": """A wireframe-style concept for a bezel-less smartphone: - Edge-to-edge display - Integrated camera under screen - Metallic frame, minimal ports - Sleek, glossy black design""", "width": 1024, "height": 1024 }, { "title": "Futuristic Electric Bicycle", "prompt": """An industrial design sketch of an electric bike: - Lightweight carbon frame, aerodynamic lines - Integrated battery, sleek display on handlebars - Neon color highlights on wheels - High-tech vibe, minimal clutter""", "width": 1024, "height": 1024 }, { "title": "Concept Car Interior", "prompt": """A luxurious and futuristic car interior concept: - Wrap-around digital dashboard - Minimalistic steering control, seat controls on touchscreen - Ambient LED accent lights - Soft leather seats, bright accent stitching""", "width": 1024, "height": 1024 } ] # Convert examples to Gradio format (if needed) GRADIO_EXAMPLES = [ [example["prompt"], example["width"], example["height"]] for example in EXAMPLES ] # 한국어 감지 함수 def contains_korean(text): for char in text: if ord('가') <= ord(char) <= ord('힣'): return True return False # 필요시 번역 후 추론 함수 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): # 한국어 감지 및 번역 original_prompt = prompt translated = False if contains_korean(prompt): translated = True translation = translator(prompt) prompt = translation[0]['translation_text'] # 랜덤 시드 설정 if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # 모델 실행 image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0 ).images[0] # 번역 정보 반환 if translated: return image, seed, original_prompt, prompt else: return image, seed, None, None # CSS 스타일 (기존 구조 유지) css = """ .container { display: flex; flex-direction: row; height: 100%; } .input-column { flex: 1; padding: 20px; border-right: 2px solid #eee; max-width: 800px; } .examples-column { flex: 1; padding: 20px; overflow-y: auto; background: #f7f7f7; } .title { text-align: center; color: #2a2a2a; padding: 20px; font-size: 2.5em; font-weight: bold; background: linear-gradient(90deg, #f0f0f0 0%, #ffffff 100%); border-bottom: 3px solid #ddd; margin-bottom: 30px; } .subtitle { text-align: center; color: #666; margin-bottom: 30px; } .input-box { background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); margin-bottom: 20px; width: 100%; } .input-box textarea { width: 100% !important; min-width: 600px !important; font-size: 14px !important; line-height: 1.5 !important; padding: 12px !important; } .example-card { background: white; padding: 15px; margin: 10px 0; border-radius: 8px; box-shadow: 0 2px 5px rgba(0,0,0,0.05); } .example-title { font-weight: bold; color: #2a2a2a; margin-bottom: 10px; } .contain { max-width: 1400px !important; margin: 0 auto !important; } .input-area { flex: 2 !important; } .examples-area { flex: 1 !important; } .translation-info { background-color: #f8f9fa; border-left: 4px solid #17a2b8; padding: 10px 15px; margin-top: 10px; border-radius: 4px; font-size: 14px; } """ with gr.Blocks(css=css) as demo: gr.Markdown( """
GINI Design
Generate sleek industrial/product design concepts with FLUX AI
""") with gr.Row(equal_height=True): # 왼쪽 입력 컬럼 with gr.Column(elem_id="input-column", scale=2): with gr.Group(elem_classes="input-box"): prompt = gr.Text( label="Design Prompt (한국어 또는 영어로 입력하세요)", placeholder="Enter your product design concept details in Korean or English...", lines=10, elem_classes="prompt-input" ) run_button = gr.Button("Generate Design", variant="primary") result = gr.Image(label="Generated Design") # 번역 정보 표시 영역 original_prompt = gr.Textbox(visible=False) translated_prompt = gr.Textbox(visible=False) translation_info = gr.Markdown(visible=False, elem_classes="translation-info") # 번역 정보 업데이트 함수 def update_translation_info(original, translated): if original and translated: return gr.update(visible=True, value=f"🔄 Korean prompt was translated to English:\n\n**Original:** {original}\n\n**Translated:** {translated}") else: return gr.update(visible=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) # 오른쪽 예제 컬럼 with gr.Column(elem_id="examples-column", scale=1): gr.Markdown("### Example Product Designs") for example in EXAMPLES: with gr.Group(elem_classes="example-card"): gr.Markdown(f"#### {example['title']}") gr.Markdown(f"```\n{example['prompt']}\n```") def create_example_handler(ex): def handler(): return { prompt: ex["prompt"], width: ex["width"], height: ex["height"] } return handler gr.Button("Use This Example", size="sm").click( fn=create_example_handler(example), outputs=[prompt, width, height] ) # 이벤트 바인딩 (버튼 클릭 & 텍스트박스 엔터) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], outputs=[result, seed, original_prompt, translated_prompt] ) # 번역 정보 업데이트 이벤트 gr.on( triggers=[original_prompt.change, translated_prompt.change], fn=update_translation_info, inputs=[original_prompt, translated_prompt], outputs=[translation_info] ) if __name__ == "__main__": demo.queue() demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True, debug=True )