Spaces:
Build error
Build error
File size: 12,630 Bytes
ec38b03 81b1a0e e797135 6284dc0 7776a83 6284dc0 e797135 6284dc0 54516d1 5d10050 7776a83 54516d1 ec38b03 adfe191 ec38b03 adfe191 ec38b03 adfe191 ec38b03 adfe191 ec38b03 81b1a0e ec38b03 adfe191 ec38b03 53ff575 ec38b03 adfe191 ec38b03 adfe191 ec38b03 81b1a0e 621c740 7776a83 621c740 7776a83 621c740 7776a83 621c740 81b1a0e 6284dc0 81b1a0e 1592dab 81b1a0e 6284dc0 81b1a0e ec38b03 adfe191 ec38b03 a10635a 22bfe4c e4862f5 1592dab bcfa392 a10635a f70bf31 a10635a 81b1a0e ec38b03 7776a83 ec38b03 adfe191 ec38b03 d967d62 e797135 741bf59 adfe191 7776a83 b59df1c adfe191 741bf59 adfe191 741bf59 adfe191 741bf59 adfe191 741bf59 ec38b03 741bf59 ec38b03 7776a83 adfe191 741bf59 85f9120 53ff575 85f9120 ec38b03 adfe191 ec38b03 741bf59 ec38b03 adfe191 ec38b03 adfe191 ec38b03 adfe191 ec38b03 adfe191 7776a83 ec38b03 adfe191 ec38b03 adfe191 8a9ec25 7776a83 ec38b03 adfe191 ec38b03 741bf59 7776a83 ec38b03 7776a83 adfe191 7776a83 ec38b03 7776a83 ec38b03 adfe191 ec38b03 7776a83 ec38b03 adfe191 ec38b03 7776a83 adfe191 7776a83 ec38b03 adfe191 ec38b03 7776a83 adfe191 7776a83 1acca69 7776a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
##########################################################
# 0. ํ๊ฒฝ ์ค์ ๋ฐ ๋ผ์ด๋ธ๋ฌ๋ฆฌ ์ํฌํธ
##########################################################
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from glob import glob
from typing import Tuple, Optional
from PIL import Image
from gradio_imageslider import ImageSlider
from torchvision import transforms
import requests
from io import BytesIO
import zipfile
import random
# Transformers
from transformers import (
AutoConfig,
AutoModelForImageSegmentation,
)
# Hugging Face Hub
from huggingface_hub import hf_hub_download
##########################################################
# 1. Config ๋ฐ from_config() ์ด๊ธฐํ
##########################################################
# 1) Config๋ง ๋จผ์ ๋ก๋
config = AutoConfig.from_pretrained(
"zhengpeng7/BiRefNet", # ์์
trust_remote_code=True
)
# 2) config.get_text_config์ ๋๋ฏธ ๋ฉ์๋ ๋ถ์ฌ (tie_word_embeddings=False)
def dummy_get_text_config(decoder=True):
return type("DummyTextConfig", (), {"tie_word_embeddings": False})()
config.get_text_config = dummy_get_text_config
# 3) ๋ชจ๋ธ ๊ตฌ์กฐ๋ง ๋ง๋ค๊ธฐ
birefnet = AutoModelForImageSegmentation.from_config(config, trust_remote_code=True)
birefnet.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
birefnet.to(device)
birefnet.half()
##########################################################
# 2. ๋ชจ๋ธ ๊ฐ์ค์น ๋ค์ด๋ก๋ & ๋ก๋
##########################################################
# huggingface_hub์์ safetensors ๋๋ bin ํ์ผ ๋ค์ด๋ก๋
# (repo_id, filename ๋ฑ์ ์ค์ ์ฌ์ฉ ํ๊ฒฝ์ ๋ง๊ฒ ๋ณ๊ฒฝ)
weights_path = hf_hub_download(
repo_id="zhengpeng7/BiRefNet", # ์์
filename="model.safetensors", # ๋๋ "pytorch_model.bin"
trust_remote_code=True
)
print("Downloaded weights to:", weights_path)
# state_dict ๋ก๋
print("Loading BiRefNet weights from HF Hub file:", weights_path)
state_dict = torch.load(weights_path, map_location="cpu")
missing, unexpected = birefnet.load_state_dict(state_dict, strict=False)
print("[Info] Missing keys:", missing)
print("[Info] Unexpected keys:", unexpected)
torch.cuda.empty_cache()
##########################################################
# 3. ์ด๋ฏธ์ง ํ์ฒ๋ฆฌ ํจ์๋ค
##########################################################
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image_np = np.array(image) / 255.0
mask_np = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image_np, mask_np, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
##########################################################
# 4. ์์ ์ค์ ๋ฐ ๊ธฐํ
##########################################################
usage_to_weights_file = {
'General': 'BiRefNet',
'General-HR': 'BiRefNet_HR',
'General-Lite': 'BiRefNet_lite',
'General-Lite-2K': 'BiRefNet_lite-2K',
'Matting': 'BiRefNet-matting',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
'General-legacy': 'BiRefNet-legacy'
}
examples_image = [[path, "1024x1024", "General"] for path in glob('examples/*')]
examples_text = [[url, "1024x1024", "General"] for url in [
"https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
]]
examples_batch = [[file, "1024x1024", "General"] for file in glob('examples/*')]
descriptions = (
"Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n"
"The resolution used in our training was `1024x1024`, which is suggested for good results! "
"`2048x2048` is suggested for BiRefNet_HR.\n"
"Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n"
"We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access."
)
##########################################################
# 5. ์ถ๋ก ํจ์ (์ด๋ฏธ ๋ก๋๋ birefnet ๋ชจ๋ธ ์ฌ์ฉ)
##########################################################
@spaces.GPU
def predict(images, resolution, weights_file):
# weights_file์ ์ฌ๊ธฐ์๋ ๋ฌด์ํ๊ณ , ์ด๋ฏธ ๋ก๋๋ birefnet ์ฌ์ฉ
assert images is not None, 'Images cannot be None.'
# Parse resolution
try:
w, h = map(int, resolution.strip().split('x'))
w, h = int(w//32*32), int(h//32*32)
except:
w, h = 1024, 1024
resolution_tuple = (w, h)
# ๋ฆฌ์คํธ์ธ์ง ํ์ธ
if isinstance(images, list):
is_batch = True
outputs, save_paths = [], []
save_dir = 'preds-BiRefNet'
os.makedirs(save_dir, exist_ok=True)
else:
images = [images]
is_batch = False
for idx, image_src in enumerate(images):
# ํ์ผ ๊ฒฝ๋ก ํน์ URL
if isinstance(image_src, str):
if os.path.isfile(image_src):
image_ori = Image.open(image_src)
else:
resp = requests.get(image_src)
image_ori = Image.open(BytesIO(resp.content))
# numpy array โ PIL
elif isinstance(image_src, np.ndarray):
image_ori = Image.fromarray(image_src)
else:
image_ori = image_src.convert('RGB')
# ์ ์ฒ๋ฆฌ
preproc = ImagePreprocessor(resolution_tuple)
image_proc = preproc.proc(image_ori.convert('RGB')).unsqueeze(0).to(device).half()
# ์ถ๋ก
with torch.inference_mode():
preds = birefnet(image_proc)[-1].sigmoid().cpu()
pred_mask = preds[0].squeeze()
# ํ์ฒ๋ฆฌ
pred_pil = transforms.ToPILImage()(pred_mask)
image_masked = refine_foreground(image_ori, pred_pil)
image_masked.putalpha(pred_pil.resize(image_ori.size))
if is_batch:
fbase = (os.path.splitext(os.path.basename(image_src))[0] if isinstance(image_src, str) else f"img_{idx}")
outpath = os.path.join(save_dir, f"{fbase}.png")
image_masked.save(outpath)
save_paths.append(outpath)
outputs.append(image_masked)
else:
outputs = [image_masked, image_ori]
torch.cuda.empty_cache()
if is_batch:
zippath = os.path.join(save_dir, f"{save_dir}.zip")
with zipfile.ZipFile(zippath, 'w') as zipf:
for fpath in save_paths:
zipf.write(fpath, os.path.basename(fpath))
return outputs, zippath
else:
return outputs
##########################################################
# 6. Gradio UI
##########################################################
css = """
body {
background: linear-gradient(135deg, #667eea, #764ba2);
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
color: #333;
margin: 0;
padding: 0;
}
.gradio-container {
background: rgba(255, 255, 255, 0.95);
border-radius: 15px;
padding: 30px 40px;
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
margin: 40px auto;
max-width: 1200px;
}
.gradio-container h1 {
color: #333;
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable {
width: 95% !important;
max-width: unset !important;
}
#examples_container {
margin: auto;
width: 90%;
}
#examples_row {
justify-content: center;
}
.sidebar {
background: rgba(255, 255, 255, 0.98);
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
button, .btn {
background: linear-gradient(90deg, #ff8a00, #e52e71);
border: none;
color: #fff;
padding: 12px 24px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 1px;
border-radius: 5px;
cursor: pointer;
transition: transform 0.2s ease-in-out;
}
button:hover, .btn:hover {
transform: scale(1.05);
}
"""
title_html = """
<h1 align="center" style="margin-bottom: 0.2em;">BiRefNet Demo (No Tie-Weights Crash)</h1>
<p align="center" style="font-size:1.1em; color:#555;">
Using <code>from_config()</code> + local <code>state_dict</code> or <code>hf_hub_download</code> to bypass tie_weights issues
</p>
"""
with gr.Blocks(css=css, title="BiRefNet Demo") as demo:
gr.Markdown(title_html)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type='pil', label='Upload an Image')
resolution_input = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn = gr.Button("Predict")
with gr.Column(scale=2):
output_slider = ImageSlider(label="Result", type="pil")
gr.Examples(examples=examples_image, inputs=[image_input, resolution_input, weights_radio], label="Examples")
with gr.Tab("Text"):
with gr.Row():
with gr.Column(scale=1):
image_url = gr.Textbox(label="Paste an Image URL")
resolution_input_text = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio_text = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn_text = gr.Button("Predict")
with gr.Column(scale=2):
output_slider_text = ImageSlider(label="Result", type="pil")
gr.Examples(examples=examples_text, inputs=[image_url, resolution_input_text, weights_radio_text], label="Examples")
with gr.Tab("Batch"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Multiple Images", type="filepath", file_count="multiple")
resolution_input_batch = gr.Textbox(lines=1, placeholder="e.g., 1024x1024", label="Resolution")
weights_radio_batch = gr.Radio(list(usage_to_weights_file.keys()), value="General", label="Weights")
predict_btn_batch = gr.Button("Predict")
with gr.Column(scale=2):
output_gallery = gr.Gallery(label="Results", scale=1)
zip_output = gr.File(label="Zip Download")
gr.Examples(examples=examples_batch, inputs=[file_input, resolution_input_batch, weights_radio_batch], label="Examples")
gr.Markdown("<p align='center'>Model by <a href='https://huggingface.co/ZhengPeng7/BiRefNet'>ZhengPeng7/BiRefNet</a></p>")
# ์ด๋ฒคํธ ์ฐ๊ฒฐ
predict_btn.click(
fn=predict,
inputs=[image_input, resolution_input, weights_radio],
outputs=output_slider
)
predict_btn_text.click(
fn=predict,
inputs=[image_url, resolution_input_text, weights_radio_text],
outputs=output_slider_text
)
predict_btn_batch.click(
fn=predict,
inputs=[file_input, resolution_input_batch, weights_radio_batch],
outputs=[output_gallery, zip_output]
)
if __name__ == "__main__":
demo.launch(share=False, debug=True)
|