|
import inspect
|
|
import logging
|
|
import uuid
|
|
from datetime import date, datetime, time
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Optional, Set, Type, Union, get_type_hints
|
|
|
|
from browser_use.controller.registry.views import ActionModel
|
|
from langchain.tools import BaseTool
|
|
from langchain_mcp_adapters.client import MultiServerMCPClient
|
|
from pydantic import BaseModel, Field, create_model
|
|
from pydantic.v1 import BaseModel, Field
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
async def setup_mcp_client_and_tools(mcp_server_config: Dict[str, Any]) -> Optional[MultiServerMCPClient]:
|
|
"""
|
|
Initializes the MultiServerMCPClient, connects to servers, fetches tools,
|
|
filters them, and returns a flat list of usable tools and the client instance.
|
|
|
|
Returns:
|
|
A tuple containing:
|
|
- list[BaseTool]: The filtered list of usable LangChain tools.
|
|
- MultiServerMCPClient | None: The initialized and started client instance, or None on failure.
|
|
"""
|
|
|
|
logger.info("Initializing MultiServerMCPClient...")
|
|
|
|
if not mcp_server_config:
|
|
logger.error("No MCP server configuration provided.")
|
|
return None
|
|
|
|
try:
|
|
if "mcpServers" in mcp_server_config:
|
|
mcp_server_config = mcp_server_config["mcpServers"]
|
|
client = MultiServerMCPClient(mcp_server_config)
|
|
await client.__aenter__()
|
|
return client
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to setup MCP client or fetch tools: {e}", exc_info=True)
|
|
return None
|
|
|
|
|
|
def create_tool_param_model(tool: BaseTool) -> Type[BaseModel]:
|
|
"""Creates a Pydantic model from a LangChain tool's schema"""
|
|
|
|
|
|
json_schema = tool.args_schema
|
|
tool_name = tool.name
|
|
|
|
|
|
if json_schema is not None:
|
|
|
|
|
|
params = {}
|
|
|
|
|
|
if 'properties' in json_schema:
|
|
|
|
required_fields: Set[str] = set(json_schema.get('required', []))
|
|
|
|
for prop_name, prop_details in json_schema['properties'].items():
|
|
field_type = resolve_type(prop_details, f"{tool_name}_{prop_name}")
|
|
|
|
|
|
is_required = prop_name in required_fields
|
|
|
|
|
|
default_value = prop_details.get('default', ... if is_required else None)
|
|
description = prop_details.get('description', '')
|
|
|
|
|
|
field_kwargs = {'default': default_value}
|
|
if description:
|
|
field_kwargs['description'] = description
|
|
|
|
|
|
if 'minimum' in prop_details:
|
|
field_kwargs['ge'] = prop_details['minimum']
|
|
if 'maximum' in prop_details:
|
|
field_kwargs['le'] = prop_details['maximum']
|
|
if 'minLength' in prop_details:
|
|
field_kwargs['min_length'] = prop_details['minLength']
|
|
if 'maxLength' in prop_details:
|
|
field_kwargs['max_length'] = prop_details['maxLength']
|
|
if 'pattern' in prop_details:
|
|
field_kwargs['pattern'] = prop_details['pattern']
|
|
|
|
|
|
params[prop_name] = (field_type, Field(**field_kwargs))
|
|
|
|
return create_model(
|
|
f'{tool_name}_parameters',
|
|
__base__=ActionModel,
|
|
**params,
|
|
)
|
|
|
|
|
|
run_method = tool._run
|
|
sig = inspect.signature(run_method)
|
|
|
|
|
|
try:
|
|
type_hints = get_type_hints(run_method)
|
|
except Exception:
|
|
type_hints = {}
|
|
|
|
params = {}
|
|
for name, param in sig.parameters.items():
|
|
|
|
if name == 'self':
|
|
continue
|
|
|
|
|
|
annotation = type_hints.get(name, param.annotation)
|
|
if annotation == inspect.Parameter.empty:
|
|
annotation = Any
|
|
|
|
|
|
if param.default != param.empty:
|
|
params[name] = (annotation, param.default)
|
|
else:
|
|
params[name] = (annotation, ...)
|
|
|
|
return create_model(
|
|
f'{tool_name}_parameters',
|
|
__base__=ActionModel,
|
|
**params,
|
|
)
|
|
|
|
|
|
def resolve_type(prop_details: Dict[str, Any], prefix: str = "") -> Any:
|
|
"""Recursively resolves JSON schema type to Python/Pydantic type"""
|
|
|
|
|
|
if '$ref' in prop_details:
|
|
|
|
return Any
|
|
|
|
|
|
type_mapping = {
|
|
'string': str,
|
|
'integer': int,
|
|
'number': float,
|
|
'boolean': bool,
|
|
'array': List,
|
|
'object': Dict,
|
|
'null': type(None),
|
|
}
|
|
|
|
|
|
if prop_details.get('type') == 'string' and 'format' in prop_details:
|
|
format_mapping = {
|
|
'date-time': datetime,
|
|
'date': date,
|
|
'time': time,
|
|
'email': str,
|
|
'uri': str,
|
|
'url': str,
|
|
'uuid': uuid.UUID,
|
|
'binary': bytes,
|
|
}
|
|
return format_mapping.get(prop_details['format'], str)
|
|
|
|
|
|
if 'enum' in prop_details:
|
|
enum_values = prop_details['enum']
|
|
|
|
enum_dict = {}
|
|
for i, v in enumerate(enum_values):
|
|
|
|
if isinstance(v, str):
|
|
key = v.upper().replace(' ', '_').replace('-', '_')
|
|
if not key.isidentifier():
|
|
key = f"VALUE_{i}"
|
|
else:
|
|
key = f"VALUE_{i}"
|
|
enum_dict[key] = v
|
|
|
|
|
|
if enum_dict:
|
|
return Enum(f"{prefix}_Enum", enum_dict)
|
|
return str
|
|
|
|
|
|
if prop_details.get('type') == 'array' and 'items' in prop_details:
|
|
item_type = resolve_type(prop_details['items'], f"{prefix}_item")
|
|
return List[item_type]
|
|
|
|
|
|
if prop_details.get('type') == 'object' and 'properties' in prop_details:
|
|
nested_params = {}
|
|
for nested_name, nested_details in prop_details['properties'].items():
|
|
nested_type = resolve_type(nested_details, f"{prefix}_{nested_name}")
|
|
|
|
required_fields = prop_details.get('required', [])
|
|
is_required = nested_name in required_fields
|
|
default_value = nested_details.get('default', ... if is_required else None)
|
|
description = nested_details.get('description', '')
|
|
|
|
field_kwargs = {'default': default_value}
|
|
if description:
|
|
field_kwargs['description'] = description
|
|
|
|
nested_params[nested_name] = (nested_type, Field(**field_kwargs))
|
|
|
|
|
|
nested_model = create_model(f"{prefix}_Model", **nested_params)
|
|
return nested_model
|
|
|
|
|
|
if 'oneOf' in prop_details or 'anyOf' in prop_details:
|
|
union_schema = prop_details.get('oneOf') or prop_details.get('anyOf')
|
|
union_types = []
|
|
for i, t in enumerate(union_schema):
|
|
union_types.append(resolve_type(t, f"{prefix}_{i}"))
|
|
|
|
if union_types:
|
|
return Union.__getitem__(tuple(union_types))
|
|
return Any
|
|
|
|
|
|
if 'allOf' in prop_details:
|
|
nested_params = {}
|
|
for i, schema_part in enumerate(prop_details['allOf']):
|
|
if 'properties' in schema_part:
|
|
for nested_name, nested_details in schema_part['properties'].items():
|
|
nested_type = resolve_type(nested_details, f"{prefix}_allOf_{i}_{nested_name}")
|
|
|
|
required_fields = schema_part.get('required', [])
|
|
is_required = nested_name in required_fields
|
|
nested_params[nested_name] = (nested_type, ... if is_required else None)
|
|
|
|
|
|
if nested_params:
|
|
composite_model = create_model(f"{prefix}_CompositeModel", **nested_params)
|
|
return composite_model
|
|
return Dict
|
|
|
|
|
|
schema_type = prop_details.get('type', 'string')
|
|
if isinstance(schema_type, list):
|
|
|
|
non_null_types = [t for t in schema_type if t != 'null']
|
|
if non_null_types:
|
|
primary_type = type_mapping.get(non_null_types[0], Any)
|
|
if 'null' in schema_type:
|
|
return Optional[primary_type]
|
|
return primary_type
|
|
return Any
|
|
|
|
return type_mapping.get(schema_type, Any)
|
|
|