import streamlit as st import cv2 from PIL import Image import numpy as np from ultralytics import YOLO # Load YOLO models model_sawit = YOLO("best_yolov8.pt") # Ganti dengan path model YOLOv8 untuk pohon sawit model_apel = YOLO("best_apple.pt") # Ganti dengan path model YOLOv8 untuk apel # Sidebar menu menu = st.sidebar.selectbox("Pilih Aplikasi", ["Deteksi Pohon Sawit", "Deteksi Warna Apel"]) if menu == "Deteksi Pohon Sawit": st.title("Deteksi Pohon Sawit dengan YOLOv8") confidence_threshold = st.slider("Confidence Threshold", min_value=0.0, max_value=1.0, value=0.5, step=0.05) uploaded_file = st.file_uploader("Upload gambar", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Baca gambar image = Image.open(uploaded_file) img_array = np.array(image) # Jalankan deteksi dengan pengaturan confidence threshold results = model_sawit(img_array, conf=confidence_threshold) # Tambahkan bounding box dan nomor urut dengan background warna for i, box in enumerate(results[0].boxes): x1, y1, x2, y2 = map(int, box.xyxy[0]) # Gambar bounding box cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 0, 255), 2) # Gunakan warna merah # Tambahkan nomor urut dengan background text = f"{i+1}" font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.9 thickness = 2 # Ukuran teks dan lokasi (text_width, text_height), baseline = cv2.getTextSize(text, font, font_scale, thickness) text_x, text_y = x1, y1 - 10 # Posisi teks di atas kotak rect_x1, rect_y1 = text_x, text_y - text_height - 5 rect_x2, rect_y2 = text_x + text_width + 10, text_y + baseline - 5 # Gambar background untuk teks cv2.rectangle(img_array, (rect_x1, rect_y1), (rect_x2, rect_y2), (0, 0, 255), -1) # Background merah cv2.putText(img_array, text, (text_x, text_y), font, font_scale, (255, 255, 255), thickness) # Teks putih # Tampilkan hasil st.image(img_array, caption=f"Total objek terdeteksi: {len(results[0].boxes)}", use_column_width=True) elif menu == "Deteksi Warna Apel": st.title("Deteksi Warna Apel dengan YOLOv8") st.subheader("Unggah gambar apel untuk mendeteksi dan menampilkan hasil crop sesuai warna") # Upload gambar uploaded_file = st.file_uploader("Unggah gambar", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Baca gambar dari upload file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # Deteksi objek menggunakan YOLOv8 results = model_apel(image)[0] # Ambil hasil prediksi pertama # Tampilkan gambar asli st.image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Gambar Asli", use_column_width=True) st.write("### Hasil Crop:") for i, box in enumerate(results.boxes): cls = int(box.cls) # Indeks kelas confidence = box.conf.item() # Tingkat kepercayaan class_name = model_apel.names[cls] # Nama kelas (e.g., yellow, green, red) # Bounding box koordinat x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) cropped_image = image[y1:y2, x1:x2] # Konversi ke RGB untuk ditampilkan di Streamlit cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB) # Tampilkan hasil crop st.image(cropped_image_rgb, caption=f"{class_name} ({confidence:.2f})", use_column_width=False)