gghsgn commited on
Commit
34f2309
·
verified ·
1 Parent(s): f643a7c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2
3
+ from PIL import Image
4
+ import numpy as np
5
+ from ultralytics import YOLO
6
+
7
+ # Load YOLO models
8
+ model_sawit = YOLO("best_yolov8.pt") # Ganti dengan path model YOLOv8 untuk pohon sawit
9
+ model_apel = YOLO("best_apple.pt") # Ganti dengan path model YOLOv8 untuk apel
10
+
11
+ # Sidebar menu
12
+ menu = st.sidebar.selectbox("Pilih Aplikasi", ["Deteksi Pohon Sawit", "Deteksi Warna Apel"])
13
+
14
+ if menu == "Deteksi Pohon Sawit":
15
+ st.title("Deteksi Pohon Sawit dengan YOLOv8")
16
+ confidence_threshold = st.slider("Confidence Threshold", min_value=0.0, max_value=1.0, value=0.5, step=0.05)
17
+
18
+ uploaded_file = st.file_uploader("Upload gambar", type=["jpg", "jpeg", "png"])
19
+
20
+ if uploaded_file is not None:
21
+ # Baca gambar
22
+ image = Image.open(uploaded_file)
23
+ img_array = np.array(image)
24
+
25
+ # Jalankan deteksi dengan pengaturan confidence threshold
26
+ results = model_sawit(img_array, conf=confidence_threshold)
27
+
28
+ # Tambahkan bounding box dan nomor urut dengan background warna
29
+ for i, box in enumerate(results[0].boxes):
30
+ x1, y1, x2, y2 = map(int, box.xyxy[0])
31
+ # Gambar bounding box
32
+ cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 0, 255), 2) # Gunakan warna merah
33
+
34
+ # Tambahkan nomor urut dengan background
35
+ text = f"{i+1}"
36
+ font = cv2.FONT_HERSHEY_SIMPLEX
37
+ font_scale = 0.9
38
+ thickness = 2
39
+
40
+ # Ukuran teks dan lokasi
41
+ (text_width, text_height), baseline = cv2.getTextSize(text, font, font_scale, thickness)
42
+ text_x, text_y = x1, y1 - 10 # Posisi teks di atas kotak
43
+ rect_x1, rect_y1 = text_x, text_y - text_height - 5
44
+ rect_x2, rect_y2 = text_x + text_width + 10, text_y + baseline - 5
45
+
46
+ # Gambar background untuk teks
47
+ cv2.rectangle(img_array, (rect_x1, rect_y1), (rect_x2, rect_y2), (0, 0, 255), -1) # Background merah
48
+ cv2.putText(img_array, text, (text_x, text_y), font, font_scale, (255, 255, 255), thickness) # Teks putih
49
+
50
+ # Tampilkan hasil
51
+ st.image(img_array, caption=f"Total objek terdeteksi: {len(results[0].boxes)}", use_column_width=True)
52
+
53
+ elif menu == "Deteksi Warna Apel":
54
+ st.title("Deteksi Warna Apel dengan YOLOv8")
55
+ st.subheader("Unggah gambar apel untuk mendeteksi dan menampilkan hasil crop sesuai warna")
56
+
57
+ # Upload gambar
58
+ uploaded_file = st.file_uploader("Unggah gambar", type=["jpg", "jpeg", "png"])
59
+
60
+ if uploaded_file is not None:
61
+ # Baca gambar dari upload
62
+ file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
63
+ image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
64
+
65
+ # Deteksi objek menggunakan YOLOv8
66
+ results = model_apel(image)[0] # Ambil hasil prediksi pertama
67
+
68
+ # Tampilkan gambar asli
69
+ st.image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Gambar Asli", use_column_width=True)
70
+
71
+ st.write("### Hasil Crop:")
72
+ for i, box in enumerate(results.boxes):
73
+ cls = int(box.cls) # Indeks kelas
74
+ confidence = box.conf.item() # Tingkat kepercayaan
75
+ class_name = model_apel.names[cls] # Nama kelas (e.g., yellow, green, red)
76
+
77
+ # Bounding box koordinat
78
+ x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
79
+ cropped_image = image[y1:y2, x1:x2]
80
+
81
+ # Konversi ke RGB untuk ditampilkan di Streamlit
82
+ cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)
83
+
84
+ # Tampilkan hasil crop
85
+ st.image(cropped_image_rgb, caption=f"{class_name} ({confidence:.2f})", use_column_width=False)