Spaces:
Sleeping
Sleeping
Rename realtime.py to app.py
Browse files- realtime.py → app.py +104 -214
realtime.py → app.py
RENAMED
@@ -1,214 +1,104 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import tensorflow as tf
|
5 |
-
from tensorflow.keras.models import model_from_json
|
6 |
-
import streamlit as st
|
7 |
-
from PIL import Image
|
8 |
-
|
9 |
-
# Load model
|
10 |
-
with open("jsn_model.json", "r") as json_file:
|
11 |
-
loaded_model_json = json_file.read()
|
12 |
-
model = model_from_json(loaded_model_json)
|
13 |
-
model.load_weights('weights_model1.h5')
|
14 |
-
|
15 |
-
# Loading the classifier from the file.
|
16 |
-
face_haar_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
17 |
-
|
18 |
-
UPLOAD_FOLDER = 'static'
|
19 |
-
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
|
20 |
-
|
21 |
-
def allowed_file(filename):
|
22 |
-
"""Checks the file format when file is uploaded"""
|
23 |
-
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
24 |
-
|
25 |
-
def Emotion_Analysis(image):
|
26 |
-
"""It does prediction of Emotions found in the Image provided, saves as Images and returns them"""
|
27 |
-
gray_frame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
28 |
-
faces = face_haar_cascade.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)
|
29 |
-
|
30 |
-
if len(faces) == 0:
|
31 |
-
return None
|
32 |
-
|
33 |
-
for (x, y, w, h) in faces:
|
34 |
-
roi = gray_frame[y:y + h, x:x + w]
|
35 |
-
roi = cv2.resize(roi, (48, 48))
|
36 |
-
roi = roi.astype("float") / 255.0
|
37 |
-
roi = tf.expand_dims(roi, axis=-1) # Adding channel dimension
|
38 |
-
roi = np.expand_dims(roi, axis=0) # Adding batch dimension
|
39 |
-
|
40 |
-
prediction = model.predict(roi)
|
41 |
-
EMOTIONS_LIST = ["Angry", "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise"]
|
42 |
-
rec_col = {"Happy": (0, 255, 0), "Sad": (255, 0, 0), "Surprise": (255, 204, 55),
|
43 |
-
"Angry": (0, 0, 255), "Disgust": (230, 159, 0), "Neutral": (0, 255, 255), "Fear": (128, 0, 128)}
|
44 |
-
|
45 |
-
pred_emotion = EMOTIONS_LIST[np.argmax(prediction)]
|
46 |
-
Text = str(pred_emotion)
|
47 |
-
|
48 |
-
cv2.rectangle(image, (x, y), (x + w, y + h), rec_col[str(pred_emotion)], 2)
|
49 |
-
cv2.rectangle(image, (x, y - 40), (x + w, y), rec_col[str(pred_emotion)], -1)
|
50 |
-
cv2.putText(image, Text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
51 |
-
|
52 |
-
return image, pred_emotion
|
53 |
-
|
54 |
-
def video_frame_callback(frame):
|
55 |
-
"""Callback function to process each frame of video"""
|
56 |
-
image = np.array(frame)
|
57 |
-
result = Emotion_Analysis(image)
|
58 |
-
if result is not None:
|
59 |
-
processed_image, _ = result
|
60 |
-
return processed_image
|
61 |
-
return frame
|
62 |
-
|
63 |
-
st.title('Emotion Detection App')
|
64 |
-
|
65 |
-
st.sidebar.title("Options")
|
66 |
-
|
67 |
-
# Options for manual upload or webcam capture
|
68 |
-
upload_option = st.sidebar.selectbox("Choose Upload Option", ["Image Upload", "Webcam"])
|
69 |
-
|
70 |
-
if upload_option == "Image Upload":
|
71 |
-
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["png", "jpg", "jpeg", "gif"])
|
72 |
-
|
73 |
-
if uploaded_file is not None and allowed_file(uploaded_file.name):
|
74 |
-
image = Image.open(uploaded_file)
|
75 |
-
image = np.array(image.convert('RGB')) # Ensure image is in RGB format
|
76 |
-
result = Emotion_Analysis(image)
|
77 |
-
|
78 |
-
if result is None:
|
79 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
80 |
-
st.error("No face detected")
|
81 |
-
else:
|
82 |
-
processed_image, pred_emotion = result
|
83 |
-
st.image(processed_image, caption=f"Predicted Emotion: {pred_emotion}", use_column_width=True)
|
84 |
-
|
85 |
-
elif upload_option == "Webcam":
|
86 |
-
st.sidebar.write("Webcam Capture")
|
87 |
-
run = st.checkbox('Run Webcam')
|
88 |
-
FRAME_WINDOW = st.image([])
|
89 |
-
|
90 |
-
camera = cv2.VideoCapture(0)
|
91 |
-
|
92 |
-
while run:
|
93 |
-
success, frame = camera.read()
|
94 |
-
if not success:
|
95 |
-
st.error("Unable to read from webcam. Please check your camera settings.")
|
96 |
-
break
|
97 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
98 |
-
processed_frame = video_frame_callback(frame)
|
99 |
-
FRAME_WINDOW.image(processed_frame)
|
100 |
-
|
101 |
-
camera.release()
|
102 |
-
else:
|
103 |
-
st.write("Please select an option to start.")
|
104 |
-
|
105 |
-
|
106 |
-
# import os
|
107 |
-
# import cv2
|
108 |
-
# import numpy as np
|
109 |
-
# import tensorflow as tf
|
110 |
-
# from tensorflow.keras.models import model_from_json
|
111 |
-
# import streamlit as st
|
112 |
-
# from PIL import Image
|
113 |
-
|
114 |
-
# # Load model
|
115 |
-
# with open("jsn_model.json", "r") as json_file:
|
116 |
-
# loaded_model_json = json_file.read()
|
117 |
-
# model = model_from_json(loaded_model_json)
|
118 |
-
# model.load_weights('weights_model1.h5')
|
119 |
-
|
120 |
-
# # Loading the classifier from the file.
|
121 |
-
# face_haar_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
122 |
-
|
123 |
-
# UPLOAD_FOLDER = 'static'
|
124 |
-
# ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
|
125 |
-
|
126 |
-
# def allowed_file(filename):
|
127 |
-
# """Checks the file format when file is uploaded"""
|
128 |
-
# return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
129 |
-
|
130 |
-
# def Emotion_Analysis(image):
|
131 |
-
# """It does prediction of Emotions found in the Image provided, saves as Images and returns them"""
|
132 |
-
# gray_frame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
133 |
-
# faces = face_haar_cascade.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)
|
134 |
-
|
135 |
-
# if len(faces) == 0:
|
136 |
-
# return None
|
137 |
-
|
138 |
-
# for (x, y, w, h) in faces:
|
139 |
-
# roi = gray_frame[y:y + h, x:x + w]
|
140 |
-
# roi = cv2.resize(roi, (48, 48))
|
141 |
-
# roi = roi.astype("float") / 255.0
|
142 |
-
# roi = tf.expand_dims(roi, axis=-1) # Adding channel dimension
|
143 |
-
# roi = np.expand_dims(roi, axis=0) # Adding batch dimension
|
144 |
-
|
145 |
-
# prediction = model.predict(roi)
|
146 |
-
# EMOTIONS_LIST = ["Angry", "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise"]
|
147 |
-
# rec_col = {"Happy": (0, 255, 0), "Sad": (255, 0, 0), "Surprise": (255, 204, 55),
|
148 |
-
# "Angry": (0, 0, 255), "Disgust": (230, 159, 0), "Neutral": (0, 255, 255), "Fear": (128, 0, 128)}
|
149 |
-
|
150 |
-
# pred_emotion = EMOTIONS_LIST[np.argmax(prediction)]
|
151 |
-
# Text = str(pred_emotion)
|
152 |
-
|
153 |
-
# cv2.rectangle(image, (x, y), (x + w, y + h), rec_col[str(pred_emotion)], 2)
|
154 |
-
# cv2.rectangle(image, (x, y - 40), (x + w, y), rec_col[str(pred_emotion)], -1)
|
155 |
-
# cv2.putText(image, Text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
156 |
-
|
157 |
-
# return image, pred_emotion
|
158 |
-
|
159 |
-
# def video_frame_callback(frame):
|
160 |
-
# """Callback function to process each frame of video"""
|
161 |
-
# image = np.array(frame)
|
162 |
-
# result = Emotion_Analysis(image)
|
163 |
-
# if result is not None:
|
164 |
-
# processed_image, _ = result
|
165 |
-
# return processed_image
|
166 |
-
# return frame
|
167 |
-
|
168 |
-
# st.title('Emotion Detection App')
|
169 |
-
|
170 |
-
# st.sidebar.title("Options")
|
171 |
-
|
172 |
-
# # Options for manual upload or webcam capture
|
173 |
-
# upload_option = st.sidebar.selectbox("Choose Upload Option", ["Image Upload", "Webcam"])
|
174 |
-
|
175 |
-
# if upload_option == "Image Upload":
|
176 |
-
# uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["png", "jpg", "jpeg", "gif"])
|
177 |
-
|
178 |
-
# if uploaded_file is not None and allowed_file(uploaded_file.name):
|
179 |
-
# image = Image.open(uploaded_file)
|
180 |
-
# image = np.array(image.convert('RGB')) # Ensure image is in RGB format
|
181 |
-
# result = Emotion_Analysis(image)
|
182 |
-
|
183 |
-
# if result is None:
|
184 |
-
# st.image(image, caption="Uploaded Image", use_column_width=True)
|
185 |
-
# st.error("No face detected")
|
186 |
-
# else:
|
187 |
-
# processed_image, pred_emotion = result
|
188 |
-
# st.image(processed_image, caption=f"Predicted Emotion: {pred_emotion}", use_column_width=True)
|
189 |
-
|
190 |
-
# elif upload_option == "Webcam":
|
191 |
-
# st.sidebar.write("Webcam Capture")
|
192 |
-
# run_webcam = st.sidebar.button('Run Webcam')
|
193 |
-
# stop_webcam = st.sidebar.button('Stop Webcam')
|
194 |
-
# FRAME_WINDOW = st.image([])
|
195 |
-
|
196 |
-
# if run_webcam:
|
197 |
-
# camera = cv2.VideoCapture(0)
|
198 |
-
# st.session_state['run'] = True
|
199 |
-
|
200 |
-
# if 'run' in st.session_state and st.session_state['run']:
|
201 |
-
# while True:
|
202 |
-
# success, frame = camera.read()
|
203 |
-
# if not success:
|
204 |
-
# st.error("Unable to read from webcam. Please check your camera settings.")
|
205 |
-
# break
|
206 |
-
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
207 |
-
# processed_frame = video_frame_callback(frame)
|
208 |
-
# FRAME_WINDOW.image(processed_frame)
|
209 |
-
# if stop_webcam:
|
210 |
-
# st.session_state['run'] = False
|
211 |
-
# camera.release()
|
212 |
-
# break
|
213 |
-
# else:
|
214 |
-
# st.write("Please select an option to start.")
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.keras.models import model_from_json
|
6 |
+
import streamlit as st
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Load model
|
10 |
+
with open("jsn_model.json", "r") as json_file:
|
11 |
+
loaded_model_json = json_file.read()
|
12 |
+
model = model_from_json(loaded_model_json)
|
13 |
+
model.load_weights('weights_model1.h5')
|
14 |
+
|
15 |
+
# Loading the classifier from the file.
|
16 |
+
face_haar_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
17 |
+
|
18 |
+
UPLOAD_FOLDER = 'static'
|
19 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
|
20 |
+
|
21 |
+
def allowed_file(filename):
|
22 |
+
"""Checks the file format when file is uploaded"""
|
23 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
24 |
+
|
25 |
+
def Emotion_Analysis(image):
|
26 |
+
"""It does prediction of Emotions found in the Image provided, saves as Images and returns them"""
|
27 |
+
gray_frame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
28 |
+
faces = face_haar_cascade.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)
|
29 |
+
|
30 |
+
if len(faces) == 0:
|
31 |
+
return None
|
32 |
+
|
33 |
+
for (x, y, w, h) in faces:
|
34 |
+
roi = gray_frame[y:y + h, x:x + w]
|
35 |
+
roi = cv2.resize(roi, (48, 48))
|
36 |
+
roi = roi.astype("float") / 255.0
|
37 |
+
roi = tf.expand_dims(roi, axis=-1) # Adding channel dimension
|
38 |
+
roi = np.expand_dims(roi, axis=0) # Adding batch dimension
|
39 |
+
|
40 |
+
prediction = model.predict(roi)
|
41 |
+
EMOTIONS_LIST = ["Angry", "Disgust", "Fear", "Happy", "Neutral", "Sad", "Surprise"]
|
42 |
+
rec_col = {"Happy": (0, 255, 0), "Sad": (255, 0, 0), "Surprise": (255, 204, 55),
|
43 |
+
"Angry": (0, 0, 255), "Disgust": (230, 159, 0), "Neutral": (0, 255, 255), "Fear": (128, 0, 128)}
|
44 |
+
|
45 |
+
pred_emotion = EMOTIONS_LIST[np.argmax(prediction)]
|
46 |
+
Text = str(pred_emotion)
|
47 |
+
|
48 |
+
cv2.rectangle(image, (x, y), (x + w, y + h), rec_col[str(pred_emotion)], 2)
|
49 |
+
cv2.rectangle(image, (x, y - 40), (x + w, y), rec_col[str(pred_emotion)], -1)
|
50 |
+
cv2.putText(image, Text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
51 |
+
|
52 |
+
return image, pred_emotion
|
53 |
+
|
54 |
+
def video_frame_callback(frame):
|
55 |
+
"""Callback function to process each frame of video"""
|
56 |
+
image = np.array(frame)
|
57 |
+
result = Emotion_Analysis(image)
|
58 |
+
if result is not None:
|
59 |
+
processed_image, _ = result
|
60 |
+
return processed_image
|
61 |
+
return frame
|
62 |
+
|
63 |
+
st.title('Emotion Detection App')
|
64 |
+
|
65 |
+
st.sidebar.title("Options")
|
66 |
+
|
67 |
+
# Options for manual upload or webcam capture
|
68 |
+
upload_option = st.sidebar.selectbox("Choose Upload Option", ["Image Upload", "Webcam"])
|
69 |
+
|
70 |
+
if upload_option == "Image Upload":
|
71 |
+
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["png", "jpg", "jpeg", "gif"])
|
72 |
+
|
73 |
+
if uploaded_file is not None and allowed_file(uploaded_file.name):
|
74 |
+
image = Image.open(uploaded_file)
|
75 |
+
image = np.array(image.convert('RGB')) # Ensure image is in RGB format
|
76 |
+
result = Emotion_Analysis(image)
|
77 |
+
|
78 |
+
if result is None:
|
79 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
80 |
+
st.error("No face detected")
|
81 |
+
else:
|
82 |
+
processed_image, pred_emotion = result
|
83 |
+
st.image(processed_image, caption=f"Predicted Emotion: {pred_emotion}", use_column_width=True)
|
84 |
+
|
85 |
+
elif upload_option == "Webcam":
|
86 |
+
st.sidebar.write("Webcam Capture")
|
87 |
+
run = st.checkbox('Run Webcam')
|
88 |
+
FRAME_WINDOW = st.image([])
|
89 |
+
|
90 |
+
camera = cv2.VideoCapture(0)
|
91 |
+
|
92 |
+
while run:
|
93 |
+
success, frame = camera.read()
|
94 |
+
if not success:
|
95 |
+
st.error("Unable to read from webcam. Please check your camera settings.")
|
96 |
+
break
|
97 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
98 |
+
processed_frame = video_frame_callback(frame)
|
99 |
+
FRAME_WINDOW.image(processed_frame)
|
100 |
+
|
101 |
+
camera.release()
|
102 |
+
else:
|
103 |
+
st.write("Please select an option to start.")
|
104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|